1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# spread-level plots (J. Fox)
# 16 March 2010 by J. Fox: spreadLevelPlot.lm now deletes observations with negative fitted values
# 25 May 2010 by J. Fox: corrected errors due to introduction of grid()
# 2015-11-24: added smoother and related args to lm method. John
# 2017-02-16: replace rlm() with MASS::rlm(). J. Fox
# 2017-10-27: reformat warnings. J. Fox
# 2017-11-30: substitute carPalette() for palette(). J. Fox
slp <- function(...) spreadLevelPlot(...)
spreadLevelPlot <- function(x, ...) {
UseMethod("spreadLevelPlot")
}
spreadLevelPlot.default <- function(x, by, robust.line=TRUE,
start=0, xlab="Median", ylab="Hinge-Spread", point.labels=TRUE, las=par("las"),
main=paste("Spread-Level Plot for", deparse(substitute(x)),
"by", deparse(substitute(by))), col=carPalette()[1], col.lines=carPalette()[2],
pch=1, lwd=2, grid=TRUE, ...){
good <- complete.cases(x, by)
if (sum(good) != length(x)) {
warning("NAs ignored")
x <- x[good]
by <- by[good]
}
min.x <- min(x)
if (min.x <= -start){
start <- nice(-min.x + 0.05*diff(quantile(x, c(.25, .75))), direction="up")
warning(paste("\nStart =", start," added to avoid 0 or negative values."))
}
if (start != 0) {
xlab <- paste(xlab, "+", signif(start, getOption("digits")))
x <- x + start
}
values <- unique(as.character(by))
result <- matrix(0, length(values), 4)
dimnames(result) <-list(values, c("LowerHinge", "Median", "UpperHinge", "Hinge-Spread"))
for (i in seq(along=values)){
five <- fivenum(x[by == values[i]])
result[i, ] <- c(five[2:4], five[4] - five[2])
}
medians<-result[ ,2]
spreads<-result[ ,4]
plot(medians, spreads, type="n", log="xy", main=main, xlab=xlab, ylab=ylab,
las=las, pch=pch, col=col, ...)
if(grid){
grid(lty=1, equilogs=FALSE)
box()}
points(medians, spreads, col=col, pch=pch)
pos <- ifelse(medians > median(medians), 2, 4)
if (point.labels) text(medians, spreads, as.character(values), pos=pos, ...)
mod <- if (robust.line)
MASS::rlm(log(spreads) ~ log(medians))
else lm(log(spreads) ~ log(medians), ...)
ord <- order(medians)
first <- ord[1]
last <- ord[length(ord)]
lines(start + medians[c(first, last)], exp(fitted.values(mod)[c(first, last)]),
col=col.lines, lwd=lwd, ...)
p <- 1 - (coefficients(mod))[2]
names(p) <- NULL
result <- list(Statistics=as.data.frame(result[ord,]), PowerTransformation=p)
class(result) <- "spreadLevelPlot"
result
}
spreadLevelPlot.lm <- function(x, robust.line=TRUE,
xlab="Fitted Values",
ylab="Absolute Studentized Residuals", las=par("las"),
main=paste("Spread-Level Plot for\n", deparse(substitute(x))),
pch=1, col=carPalette()[1], col.lines=carPalette()[2:3], lwd=2, grid=TRUE,
id=FALSE, smooth=TRUE, ...){
id <- applyDefaults(id, defaults=list(method=list("x", "y"), n=2, cex=1, col=carPalette()[1], location="lr"), type="id")
if (isFALSE(id)){
id.n <- 0
id.method <- "none"
labels <- id.cex <- id.col <- id.location <- NULL
}
else{
labels <- id$labels
if (is.null(labels)) labels <- names(na.omit(residuals(x)))
id.method <- id$method
id.n <- if ("identify" %in% id.method) Inf else id$n
id.cex <- id$cex
id.col <- id$col
id.location <- id$location
}
smoother.args <- applyDefaults(smooth, defaults=list(smoother=loessLine), type="smooth")
if (!isFALSE(smoother.args)) {
smoother <- smoother.args$smoother
smoother.args$smoother <- NULL
}
else {
smoother <- "none"
smoother.args <- list()
}
resid <- na.omit(abs(rstudent(x)))
fitval <- na.omit(fitted.values(x))
non.pos <- fitval <= 0
if (any(non.pos)){
fitval <- fitval[!non.pos]
resid <- resid[!non.pos]
n.non.pos <- sum(non.pos)
warning("\n", n.non.pos, " negative", if(n.non.pos > 1) " fitted values" else " fitted value", " removed")
}
min <- min(fitval)
plot(fitval, resid, log="xy", main=main, xlab=xlab, ylab=ylab,
las=las, col=col, pch=pch, type="n", ...)
if(grid){
grid(lty=1, equilogs=FALSE)
box()}
points(fitval, resid, col=col, pch=pch)
mod <- if (robust.line)
MASS::rlm(log(resid) ~ log(fitval))
else lm(log(resid) ~ log(fitval), ...)
first <- which.min(fitval)
last <- which.max(fitval)
lines((fitval)[c(first, last)], exp(fitted.values(mod)[c(first, last)]),
lwd=lwd, lty=2, col=col.lines[1], ...)
if (is.null(smoother.args$lwd.smooth)) smoother.args$lwd.smooth <- lwd
if (is.null(smoother.args$lty.smooth)) smoother.args$lty.smooth <- 1
if (is.function(smoother)) smoother(fitval, resid, col=col.lines[2],
log.x=TRUE, log.y=TRUE, smoother.args=smoother.args)
p <- 1 - (coefficients(mod))[2]
names(p) <- NULL
# point identification, added 11/20/2016
labels <- labels[!non.pos]
showLabels(fitval, resid, labels=labels,
method=id.method, n=id.n, cex=id.cex,
col=id.col, location=id.location)
# end addition
result <- list(PowerTransformation=p)
class(result) <- "spreadLevelPlot"
result
}
spreadLevelPlot.formula <- function (x, data=NULL, subset, na.action,
main=paste("Spread-Level Plot for", varnames[response], "by", varnames[-response]), ...) {
if (missing(na.action))
na.action <- getOption("na.action")
m <- match.call(expand.dots = FALSE)
m$formula <- x
if (is.matrix(eval(m$data, sys.frame(sys.parent()))))
m$data <- as.data.frame(data)
m$... <- m$main <- m$x <- NULL
m[[1]] <- as.name("model.frame")
mf <- eval(m, sys.frame(sys.parent()))
response <- attr(attr(mf, "terms"), "response")
varnames <- names(mf)
if (!response) stop ("no response variable specified")
if (length(varnames) > 2) stop("right-hand side of model has more than one variable")
x <- mf[[response]]
by <- mf[[varnames[-response]]]
spreadLevelPlot(x, by, main=main, ...)
}
print.spreadLevelPlot <- function(x, ...){
if (!is.null(x$Statistics)) print(x$Statistics, ...)
cat('\nSuggested power transformation: ', x$PowerTransformation,'\n')
invisible(x)
}
|