1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
\name{Ellipses}
\alias{ellipse}
\alias{dataEllipse}
\alias{dataEllipse.formula}
\alias{dataEllipse.default}
\alias{confidenceEllipse}
\alias{confidenceEllipse.default}
\alias{confidenceEllipse.lm}
\alias{confidenceEllipse.glm}
\alias{confidenceEllipse.mlm}
\alias{confidenceEllipses}
\alias{confidenceEllipses.default}
\alias{confidenceEllipses.mlm}
\title{Ellipses, Data Ellipses, and Confidence Ellipses}
\description{
These functions draw ellipses, including data ellipses, and
confidence ellipses for linear, generalized linear, and possibly other models.
}
\usage{
ellipse(center, shape, radius, log="", center.pch=19, center.cex=1.5,
segments=51, draw=TRUE, add=draw, xlab="", ylab="",
col=carPalette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, grid=TRUE, ...)
dataEllipse(x, ...)
\method{dataEllipse}{formula}(formula, data, subset, weights, xlab, ylab, id=FALSE, ...)
\method{dataEllipse}{default}(x, y, groups,
group.labels=group.levels, ellipse.label,
weights, log="", levels=c(0.5, 0.95), center.pch=19,
center.cex=1.5, draw=TRUE, plot.points=draw, add=!plot.points, segments=51,
robust=FALSE,
xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)),
col=if (missing(groups)) carPalette()[1:2] else carPalette()[1:length(group.levels)],
pch=if (missing(groups)) 1 else seq(group.levels),
lwd=2, fill=FALSE, fill.alpha=0.3, grid=TRUE, id=FALSE,
label.pos=NULL, label.cex=1.25, label.xpd=FALSE, ...)
confidenceEllipse(model, ...)
\method{confidenceEllipse}{lm}(model, which.coef, vcov.=vcov,
L, levels=0.95, Scheffe=FALSE, dfn,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=carPalette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw,
grid=TRUE, ...)
\method{confidenceEllipse}{glm}(model, chisq, ...)
\method{confidenceEllipse}{mlm}(model, xlab, ylab, which.coef=1:2, ...)
\method{confidenceEllipse}{default}(model, which.coef, vcov.=vcov,
L, levels=0.95, Scheffe=FALSE, dfn,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=carPalette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw,
grid=TRUE, ...)
confidenceEllipses(model, ...)
\method{confidenceEllipses}{default}(model, coefnames, main, grid=TRUE, ...)
\method{confidenceEllipses}{mlm}(model, coefnames, main, ...)
}
\arguments{
\item{center}{2-element vector with coordinates of center of ellipse.}
\item{shape}{\eqn{2\times 2}{2 * 2} shape (or covariance) matrix.}
\item{radius}{radius of circle generating the ellipse.}
\item{log}{when an ellipse is to be added to an existing plot, indicates
whether computations were on logged values and to be plotted on logged
axes; \code{"x"} if the x-axis is logged, \code{"y"} if the y-axis is
logged, and \code{"xy"} or \code{"yx"} if both axes are logged. The
default is \code{""}, indicating that neither axis is logged.}
\item{center.pch}{character for plotting ellipse center; if \code{FALSE} or \code{NULL} the center point isn't plotted.}
\item{center.cex}{relative size of character for plotting ellipse center.}
\item{segments}{number of line-segments used to draw ellipse.}
\item{draw}{if \code{TRUE} produce graphical output; if \code{FALSE}, only invisibly return coordinates of ellipse(s).}
\item{add}{if \code{TRUE} add ellipse(s) to current plot.}
\item{xlab}{label for horizontal axis.}
\item{ylab}{label for vertical axis.}
\item{x}{a numeric vector, or (if \code{y} is missing) a 2-column numeric matrix.}
\item{y}{a numeric vector, of the same length as \code{x}.}
\item{groups}{optional: a factor to divide the data into groups; a separate ellipse will be plotted for each group (level of the factor).}
\item{formula}{for the formula method, a model formula, of the form \code{y ~ x} or, if plotting by
groups, \code{y ~ x | z}, where \code{z} evaluates to a factor
or other variable dividing the data into groups.}
\item{data}{for the formula method, a data frame within which to evaluate the formula.}
\item{subset}{for the formula method, expression defining a subset of observations.}
\item{group.labels}{labels to be plotted for the groups; by default, the levels of the \code{groups} factor.}
\item{ellipse.label}{a label for the ellipse(s) or a vector of labels; if several ellipses are drawn and just one label is given,
then that label will be repeated. The default is not to label the ellipses.}
\item{label.pos}{position(s) of labels for the ellipses, a vector of integers (in 0:4) or character strings (in c("center", "bottom", "left", "top", "right"), or in c("C", "S", "W", "N", "E") used in labeling ellipses, recycled as necessary. Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above and to the right of the max/min coordinates of the ellipse; the value 0 specifies the centroid of the ellipse object. The default, \code{label.pos=NULL} uses the correlation of the ellipse to determine "top" (r>=0) or "bottom" (r<0)}.
\item{label.cex}{character size for ellipse labels.}
\item{label.xpd}{allow labels to be drawn outside of plotting region (default \code{FALSE}).}
\item{weights}{a numeric vector of weights, of the same length as \code{x} and \code{y} to be used by \code{\link{cov.wt}}
or \code{\link[MASS]{cov.trob}} in computing a weighted covariance matrix; if absent, weights of \code{1} are used.}
\item{plot.points}{if \code{FALSE} data ellipses are drawn,
but points are not plotted.}
\item{levels}{draw elliptical contours at these (normal) probability or confidence levels.}
\item{robust}{if \code{TRUE} use the \code{cov.trob} function in the \pkg{MASS} package
to calculate the center and covariance matrix for the data ellipse.}
\item{model}{a model object produced by \code{lm} or \code{glm}.}
\item{which.coef}{2-element vector giving indices of coefficients to plot;
if missing, the first two coefficients (disregarding the regression constant)
will be selected.}
\item{vcov.}{a coefficient-covariance matrix or a function (such as \code{\link{hccm}}) to
compute the coefficent-covariance
matrix from \code{model}; the default is the \code{vcov} function.
Note that arguments supplied to \code{...} are \emph{not} passed to \code{vcov.} when it's a function; in this case either use an anonymous function in which the
additional arguments are set, or supply the coefficient covariance matrix directly.
}
\item{L}{As an alternative to selecting coefficients to plot, a transformation matrix can be specified to compute two
linear combinations of the coefficients; if the \code{L} matrix is given, it takes precedence over the \code{which.coef}
argument. \code{L} should have two rows and as many columns as there are coefficients. It can be given directly as a
numeric matrix, or specified by a pair of character-valued expressions, in the same manner as for the
\code{link{linearHypothesis}} function, but with no right-hand side.}
\item{Scheffe}{if \code{TRUE} scale the ellipse so that its projections onto the
axes give Scheffe confidence intervals for the coefficients.}
\item{dfn}{``numerator'' degrees of freedom (or just degrees of freedom for a GLM) for
drawing the confidence ellipse. Defaults to the number of coefficients in the model (disregarding the constant) if
\code{Scheffe} is \code{TRUE}, or to \code{2} otherwise; selecting \code{dfn = 1} will
draw the ``confidence-interval generating'' ellipse, with projections on the axes
corresponding to individual confidence intervals with the stated level of coverage.}
\item{chisq}{if \code{TRUE}, the confidence ellipse for the coefficients in a generalized linear model are
based on the chisquare statistic, if \code{FALSE} on the $F$-statistic. This corresponds to using the default
and linear-model methods respectively.}
\item{col}{color for lines and ellipse center; the default is the \emph{second} entry
in the current \pkg{car} palette (see \code{\link{carPalette}}
and \code{\link{par}}). For \code{dataEllipse}, two colors can be given, in
which case the first is for plotted points and the second for lines and the ellipse center;
if ellipses are plotted for \code{groups}, then this is a vector of colors for the groups.}
\item{pch}{for \code{dataEllipse} this is the plotting character (default, symbol \code{1}, a hollow circle)
to use for the points; if ellipses are plotted by \code{groups}, then this a vector of plotting characters,
with consecutive symbols starting with \code{1} as the default.}
\item{lwd}{line width; default is \code{2} (see \code{\link{par}}).}
\item{fill}{fill the ellipse with translucent color \code{col} (default, \code{FALSE})?}
\item{fill.alpha}{transparency of fill (default = \code{0.3}).}
\item{\dots}{other plotting parameters to be passed to \code{plot} and
\code{line}.}
\item{id}{controls point identification; if \code{FALSE} (the default), no points are identified;
can be a list of named arguments to the \code{\link{showLabels}} function;
\code{TRUE} is equivalent to \code{list(method="mahal", n=2, cex=1, col=carPalette()[1], location="lr")}
(with the default \code{col} actually dependent on the number of groups),
which identifies the 2 points with the largest Mahalanobis distances from the center of the data.}
\item{grid}{If TRUE, the default, a light-gray background grid is put on the
graph}
\item{coefnames}{character vector of coefficient names to use to label the diagonal of the pairwise confidence ellipse matrix plotted by \code{confidenceEllipses}; defaults to the names of the coefficients in the model.}
\item{main}{title for matrix of pairwise confidence ellipses.}
}
\details{
The ellipse is computed by suitably transforming a unit circle.
\code{dataEllipse} superimposes the normal-probability contours over a scatterplot
of the data.
\code{confidenceEllipses} plots a matrix of all pairwise confidence ellipses; each panel of the matrix is created by \code{confidenceEllipse}.
}
\value{
These functions are mainly used for their side effect of producing plots. For
greater flexibility (e.g., adding plot annotations), however, \code{ellipse} returns invisibly the (x, y) coordinates of the calculated ellipse.
\code{dataEllipse} and \code{confidenceEllipse} return invisibly the coordinates of one or more ellipses, in the latter instance a list named by
\code{levels}; \code{confidenceEllipses} invisibly returns \code{NULL}.
}
\references{
Fox, J. (2016)
\emph{Applied Regression Analysis and Generalized Linear Models},
Third Edition. Sage.
Fox, J. and Weisberg, S. (2019)
\emph{An R Companion to Applied Regression}, Third Edition, Sage.
Monette, G. (1990)
Geometry of multiple regression and 3D graphics.
In Fox, J. and Long, J. S. (Eds.)
\emph{Modern Methods of Data Analysis.} Sage.
}
\author{Georges Monette, John Fox \email{jfox@mcmaster.ca}, and Michael Friendly.}
\seealso{\code{\link[MASS]{cov.trob}}, \code{\link{cov.wt}}, \code{\link{linearHypothesis}}.}
\examples{
dataEllipse(Duncan$income, Duncan$education, levels=0.1*1:9,
ellipse.label=0.1*1:9, lty=2, fill=TRUE, fill.alpha=0.1)
# formula method
dataEllipse(education ~ income | type, data=Duncan,
levels = 0.68)
dataEllipse(education ~ income | type, data=Duncan,
levels=0.68, label.xpd=TRUE)
# vary label positions
dataEllipse(education ~ income | type, data=Duncan,
levels = 0.68,
fill = TRUE, fill.alpha = 0.1,
label.pos = c(3, 2, 4),
xlim = c(0, 100),
ylim = c(2, 120))
confidenceEllipse(lm(prestige ~ income + education, data=Duncan), Scheffe=TRUE)
confidenceEllipse(lm(prestige ~ income + education, data=Duncan), vcov.=hccm)
confidenceEllipse(lm(prestige ~ income + education, data=Duncan),
L=c("income + education", "income - education"))
confidenceEllipses(lm(prestige ~ income + education + type, data=Duncan),
fill=TRUE)
cov2cor(vcov(lm(prestige ~ income + education + type,
data=Duncan))) # correlations among coefficients
wts <- rep(1, nrow(Duncan))
wts[c(6, 16)] <- 0 # delete Minister, Conductor
with(Duncan, {
dataEllipse(income, prestige, levels=0.68)
dataEllipse(income, prestige, levels=0.68, robust=TRUE,
plot.points=FALSE, col="green3")
dataEllipse(income, prestige, weights=wts, levels=0.68,
plot.points=FALSE, col="brown")
dataEllipse(income, prestige, weights=wts, robust=TRUE, levels=0.68,
plot.points=FALSE, col="blue")
})
with(Prestige, dataEllipse(income, education, type,
id=list(n=2, labels=rownames(Prestige)), pch=15:17,
xlim=c(0, 25000), center.pch="+",
group.labels=c("Blue Collar", "Professional", "White Collar"),
ylim=c(5, 20), level=.95, fill=TRUE, fill.alpha=0.1))
}
\keyword{hplot}
\keyword{aplot}
|