1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
\name{TransformationAxes}
\alias{basicPowerAxis}
\alias{bcPowerAxis}
\alias{bcnPowerAxis}
\alias{yjPowerAxis}
\alias{probabilityAxis}
\title{Axes for Transformed Variables}
\description{
These functions produce axes for the original scale of
transformed variables. Typically these would appear as additional
axes to the right or
at the top of the plot, but if the plot is produced with
\code{axes=FALSE}, then these functions could be used for axes below or to
the left of the plot as well.
}
\usage{
basicPowerAxis(power, base=exp(1),
side=c("right", "above", "left", "below"),
at, start=0, lead.digits=1, n.ticks, grid=FALSE, grid.col=gray(0.50),
grid.lty=2,
axis.title="Untransformed Data", cex=1, las=par("las"))
bcPowerAxis(power, side=c("right", "above", "left", "below"),
at, start=0, lead.digits=1, n.ticks, grid=FALSE, grid.col=gray(0.50),
grid.lty=2,
axis.title="Untransformed Data", cex=1, las=par("las"))
bcnPowerAxis(power, shift, side=c("right", "above", "left", "below"),
at, start=0, lead.digits=1, n.ticks, grid=FALSE, grid.col=gray(0.50),
grid.lty=2,
axis.title="Untransformed Data", cex=1, las=par("las"))
yjPowerAxis(power, side=c("right", "above", "left", "below"),
at, lead.digits=1, n.ticks, grid=FALSE, grid.col=gray(0.50),
grid.lty=2,
axis.title="Untransformed Data", cex=1, las=par("las"))
probabilityAxis(scale=c("logit", "probit"),
side=c("right", "above", "left", "below"),
at, lead.digits=1, grid=FALSE, grid.lty=2, grid.col=gray(0.50),
axis.title = "Probability", interval = 0.1, cex = 1, las=par("las"))
}
\arguments{
\item{power}{power for Box-Cox, Box-Cox with negatives, Yeo-Johnson, or simple power transformation.}
\item{shift}{the shift (gamma) parameter for the Box-Cox with negatives family.}
\item{scale}{transformation used for probabilities, \code{"logit"}
(the default) or \code{"probit"}.}
\item{side}{side at which the axis is to be drawn; numeric
codes are also permitted: \code{side = 1} for the bottom of the plot,
\code{side=2} for the left side,
\code{side = 3} for the top, \code{side = 4} for the right side.}
\item{at}{numeric vector giving location of tick marks on
original scale; if missing, the function will try to pick
nice locations for the ticks.}
\item{start}{if a \emph{start} was added to a variable (e.g., to make all
data values positive), it can now be subtracted from the tick labels.}
\item{lead.digits}{number of leading digits for determining `nice' numbers
for tick labels (default is \code{1}.}
\item{n.ticks}{number of tick marks; if missing, same as corresponding
transformed axis.}
\item{grid}{if \code{TRUE} grid lines for the axis will be drawn.}
\item{grid.col}{color of grid lines.}
\item{grid.lty}{line type for grid lines.}
\item{axis.title}{title for axis.}
\item{cex}{relative character expansion for axis label.}
\item{las}{if \code{0}, ticks labels are drawn parallel to the
axis; set to \code{1} for horizontal labels (see \code{\link{par}}).}
\item{base}{base of log transformation for \code{power.axis}
when \code{power = 0}.}
\item{interval}{desired interval between tick marks on the probability
scale.}
}
\details{
The transformations corresponding to the three functions are as follows:
\describe{
\item{\code{basicPowerAxis}:}{Simple power transformation,
\eqn{x^{\prime }=x^{p}}{x' = x^p} for \eqn{p\neq 0}{p != 0}
and \eqn{x^{\prime }=\log x}{x' = log x} for \eqn{p=0}{p = 0}.}
\item{\code{bcPowerAxis}:}{Box-Cox power transformation,
\eqn{x^{\prime }=(x^{\lambda }-1)/\lambda}{x' = (x^p - 1)/p}
for \eqn{\lambda \neq 0}{x != 0} and \eqn{x^{\prime }=\log x}{x' = log(x)}
for \eqn{\lambda =0}{p = 0}.}
\item{\code{bcnPowerAxis}:}{Box-Cox with negatives power transformation, the Box-Cox power transformation of \eqn{z = .5 * (y + (y^2 + \gamma^2)^{1/2})}, where \eqn{\gamma}{gamma} is strictly positive if \eqn{y}{y} includes negative values and non-negative otherwise. The value of \eqn{z}{z} is always positive.}
\item{\code{yjPowerAxis}:}{Yeo-Johnson power transformation,
for non-negative \eqn{x}{x}, the Box-Cox transformation of
\eqn{x + 1}{x + 1}; for negative \eqn{x}{x}, the Box-Cox transformation of
\eqn{|x| + 1}{|x| + 1} with power \eqn{2 - p}{2 - p}.}
\item{\code{probabilityAxis}:}{logit or probit transformation,
logit \eqn{=\log [p/(1-p)]}{= log[p/(1 - p)]}, or
probit \eqn{=\Phi^{-1}(p)}{= Phi^-1(p)}, where \eqn{\Phi^{-1}}{Phi^-1} is the
standard-normal quantile function.}
}
These functions will try to place tick marks at reasonable locations, but
producing a good-looking graph sometimes requires some fiddling with the
\code{at} argument.
}
\value{
These functions are used for their side effects: to draw axes.
}
\author{John Fox \email{jfox@mcmaster.ca}}
\references{
Fox, J. and Weisberg, S. (2019)
\emph{An R Companion to Applied Regression}, Third Edition, Sage.
}
\seealso{\code{\link{basicPower}}, \code{\link{bcPower}}, \code{\link{yjPower}},
\code{\link{logit}}.}
\examples{
UN <- na.omit(UN)
par(mar=c(5, 4, 4, 4) + 0.1) # leave space on right
with(UN, plot(log(ppgdp, 10), log(infantMortality, 10)))
basicPowerAxis(0, base=10, side="above",
at=c(50, 200, 500, 2000, 5000, 20000), grid=TRUE,
axis.title="GDP per capita")
basicPowerAxis(0, base=10, side="right",
at=c(5, 10, 20, 50, 100), grid=TRUE,
axis.title="infant mortality rate per 1000")
with(UN, plot(bcPower(ppgdp, 0), bcPower(infantMortality, 0)))
bcPowerAxis(0, side="above",
grid=TRUE, axis.title="GDP per capita")
bcPowerAxis(0, side="right",
grid=TRUE, axis.title="infant mortality rate per 1000")
with(UN, qqPlot(logit(infantMortality/1000)))
probabilityAxis()
with(UN, qqPlot(qnorm(infantMortality/1000)))
probabilityAxis(at=c(.005, .01, .02, .04, .08, .16), scale="probit")
qqPlot(bcnPower(Ornstein$interlocks, lambda=1/3, gamma=0.1))
bcnPowerAxis(1/3, 0.1, at=c(o=0, 5, 10, 20, 40, 80))
}
\keyword{aplot}
|