File: invTranPlot.Rd

package info (click to toggle)
car 3.1-3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,520 kB
  • sloc: makefile: 2
file content (100 lines) | stat: -rw-r--r-- 4,734 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
\name{invTranPlot}
\alias{invTranPlot}
\alias{invTranPlot.default}
\alias{invTranPlot.formula}
\alias{invTranEstimate}

\title{ Choose a Predictor Transformation Visually or Numerically }
\description{
\code{invTranPlot}
draws a two-dimensional scatterplot of \eqn{Y}{Y} versus 
\eqn{X}{X}, along with the OLS
fit from the regression of \eqn{Y}{Y} on 
\eqn{(X^{\lambda}-1)/\lambda}{(X?^(lam)-1)/lam}.  \code{invTranEstimate}
finds the nonlinear least squares estimate of \eqn{\lambda}{lambda} and its
standard error.
}
\usage{            
invTranPlot(x, ...)

\S3method{invTranPlot}{formula}(x, data, subset, na.action, id=FALSE, ...)

\S3method{invTranPlot}{default}(x, y, lambda=c(-1, 0, 1), robust=FALSE, 
        lty.lines=rep(c("solid", "dashed", "dotdash", "longdash", "twodash"), 
        length=1 + length(lambda)), lwd.lines=2, 
        col=carPalette()[1], col.lines=carPalette(), 
        xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
        family="bcPower", optimal=TRUE, key="auto", id=FALSE,
        grid=TRUE, ...)

invTranEstimate(x, y, family="bcPower", confidence=0.95, robust=FALSE)
}

\arguments{
  \item{x}{The predictor variable, or a formula with a single response and
  a single predictor }
  \item{y}{The response variable }
  \item{data}{An optional data frame to get the data for the formula}
  \item{subset}{Optional, as in \code{\link{lm}}, select a subset of the cases}
  \item{na.action}{Optional, as in \code{\link{lm}}, the action for missing data}
  \item{lambda}{The powers used in the plot.  The optimal power than minimizes
  the residual sum of squares is always added unless optimal is \code{FALSE}. }
  \item{robust}{If \code{TRUE}, then the estimated transformation is computed using
Huber M-estimation with the MAD used to estimate scale and k=1.345.  The
default is \code{FALSE}.} 
  \item{family}{The transformation family to use, \code{"bcPower"}, 
  \code{"yjPower"}, or a user-defined family.}
  \item{confidence}{returns a profile likelihood confidence interval for the optimal 
	transformation with this confidence level.  If \code{FALSE}, or if \code{robust=TRUE},
no interval is returned.}
  \item{optimal}{Include the optimal value of lambda?}
  \item{lty.lines}{line types corresponding to the powers}
  \item{lwd.lines}{the width of the plotted lines, defaults to 2 times the standard}
  \item{col}{color(s) of the points in the plot.  If you wish to distinguish points
  according to the levels of a factor, we recommend using symbols, specified with
  the \code{pch} argument, rather than colors.}
  \item{col.lines}{color of the fitted lines corresponding to the powers.  The
  default is to use the colors returned by  \code{\link{carPalette}}}
  \item{key}{The default is \code{"auto"}, in which case a legend is added to
the plot, either above the top marign or in the bottom right or top right corner.
Set to NULL to suppress the legend.}
  \item{xlab}{Label for the horizontal axis.}
  \item{ylab}{Label for the vertical axis.}
  \item{id}{controls point identification; if \code{FALSE} (the default), no points are identified;
    can be a list of named arguments to the \code{\link{showLabels}} function;
    \code{TRUE} is equivalent to \code{list(method=list(method="x", n=2, cex=1, col=carPalette()[1], location="lr")},
    which identifies the 2 points with the most extreme horizontal values --- i.e., the response variable in the model.}
  \item{...}{Additional arguments passed to the plot method, such as \code{pch}.}
\item{grid}{If TRUE, the default, a light-gray background grid is put on the
graph}
}
\value{
\code{invTranPlot}
  plots a graph and returns a data frame with \eqn{\lambda}{lam} in the 
  first column, and the residual sum of squares from the regression
  for that \eqn{\lambda}{lam} in the second column.

  \code{invTranEstimate} returns a list with elements \code{lambda} for the
  estimate, \code{se} for its standard error, and \code{RSS}, the minimum
  value of the residual sum of squares.  
}
\seealso{ \code{\link{inverseResponsePlot}},\code{\link{optimize}}}

\references{
  Fox, J. and Weisberg, S. (2011) 
  \emph{An R Companion to Applied Regression}, Second Edition, Sage.
  
  Prendergast, L. A., & Sheather, S. J. (2013)
  On sensitivity of inverse response plot estimation and the benefits of a robust estimation approach. \emph{Scandinavian Journal of Statistics}, 40(2), 219-237.

  Weisberg, S. (2014) \emph{Applied Linear Regression}, Fourth Edition, Wiley, Chapter 7. 
}

\author{Sanford Weisberg, \email{sandy@umn.edu} }

\examples{
with(UN, invTranPlot(ppgdp, infantMortality))
with(UN, invTranEstimate(ppgdp, infantMortality))
}    
\keyword{ hplot }% at least one, from doc/KEYWORDS
\keyword{regression}