1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
\name{scatterplotMatrix}
\alias{scatterplotMatrix}
\alias{scatterplotMatrix.formula}
\alias{scatterplotMatrix.default}
\alias{spm}
\title{Scatterplot Matrices}
\description{
This function provides a convenient interface to the \code{pairs} function to produce
enhanced scatterplot matrices, including univariate displays on the diagonal and a variety of fitted lines, smoothers, variance functions, and concentration ellipsoids.
\code{spm} is an abbreviation for \code{scatterplotMatrix}.
}
\usage{
scatterplotMatrix(x, ...)
\method{scatterplotMatrix}{formula}(formula, data=NULL, subset, ...)
\method{scatterplotMatrix}{default}(x, smooth = TRUE,
id = FALSE, legend = TRUE, regLine = TRUE,
ellipse = FALSE, var.labels = colnames(x), diagonal = TRUE,
plot.points = TRUE, groups = NULL, by.groups = TRUE,
use = c("complete.obs", "pairwise.complete.obs"), col =
carPalette()[-1], pch = 1:n.groups, cex = par("cex"),
cex.axis = par("cex.axis"), cex.labels = NULL,
cex.main = par("cex.main"), row1attop = TRUE, ...)
spm(x, ...)
}
\arguments{
\item{x}{a data matrix or a numeric data frame.}
\item{formula}{a one-sided \dQuote{model} formula, of the form
\code{ ~ x1 + x2 + ... + xk} or \code{ ~ x1 + x2 + ... + xk | z} where \code{z}
evaluates to a factor or other variable to divide the data into groups.}
\item{data}{for \code{scatterplotMatrix.formula},
a data frame within which to evaluate the formula.}
\item{subset}{expression defining a subset of observations.}
\item{smooth}{specifies a nonparametric estimate of the mean or median
function of the vertical axis variable given the
horizontal axis variable and optionally a nonparametric estimate of the spread or variance function. If
\code{smooth=FALSE} neither function is drawn. If \code{smooth=TRUE}, then both the mean function
and variance funtions are drawn for ungrouped data, and the mean function only is drawn for grouped
data. The default smoother is \code{\link{loessLine}}, which uses the \code{\link{loess}} function from
the \code{stats} package. This smoother is fast and reliable. See the details below for changing
the smoother, line type, width and color, of the added lines, and adding arguments for the smoother.}
\item{id}{controls point identification; if \code{FALSE} (the default), no points are identified;
can be a list of named arguments to the \code{\link{showLabels}} function;
\code{TRUE} is equivalent to \code{list(method="mahal", n=2, cex=1, location="lr")},
which identifies the 2 points (in each group, if \code{by.groups=TRUE}) with the largest Mahalanobis distances from the center
of the data; \code{list(method="identify")} for interactive point identification is not allowed.}
\item{legend}{controls placement, point size, and text size of a legend if the plot is drawn by groups; if \code{FALSE}, the legend
is suppressed. Can be a list with the named element \code{coords} specifying the position of the legend
in any form acceptable to the \code{\link{legend}} function, and elements \code{pt.cex} and \code{cex} corresponding respectively to the \code{pt.cex} and \code{cex} arguments of the \code{\link{legend}} function;
\code{TRUE} (the default) is equivalent to \code{list(coords=NULL, pt.cex=cex, cex=cex)}, for which placement will vary
by the the value of the \code{diagonal} argument---e.g., \code{"topright"} for \code{diagonal=TRUE}.}
\item{regLine}{controls adding a fitted regression line to each plot, or to each group of points
if \code{by.groups=TRUE}. If \code{regLine=FALSE}, no line
is drawn. This argument can also be a list with named list, with default \code{regLine=TRUE} equivalent
to \code{regLine = list(method=lm, lty=1, lwd=2, col=col[1])} specifying the name of the function that
computes the line, with line type 1 (solid) of relative line width 2 and the color equal to the first
value in the argument \code{col}. Setting \code{method=MASS::rlm} would fit using a robust regression.}
\item{ellipse}{controls plotting data-concentration ellipses. If \code{FALSE} (the default), no
ellipses are plotted. Can be a list of named values giving \code{levels}, a vector of one or more
bivariate-normal probability-contour levels at which to
plot the ellipses; \code{robust}, a logical value determing whether to use
the \code{\link[MASS]{cov.trob}} function in the \pkg{MASS} package
to calculate the center and covariance matrix for the data ellipses; and \code{fill} and \code{fill.alpha},
which control whether the ellipse is filled and the transparency of the fill. \code{TRUE} is equivalent
to \code{list(levels=c(.5, .95), robust=TRUE, fill=TRUE, fill.alpha=0.2)}.}
\item{var.labels}{variable labels (for the diagonal of the plot).}
\item{diagonal}{contents of the diagonal panels of the plot. If \code{diagonal=TRUE} adaptive kernel density
estimates are plotted, separately for each group if grouping is present. \code{diagonal=FALSE} suppresses
the diagonal entries. See details below for other choices for the diagonal.}
\item{plot.points}{if \code{TRUE} the points are plotted in each
off-diagonal panel.}
\item{groups}{a factor or other variable dividing the data into groups; groups are
plotted with different colors and plotting characters.}
\item{by.groups}{if \code{TRUE}, the default, regression lines and smooths are fit by groups.}
\item{use}{if \code{"complete.obs"} (the default), cases with missing data are omitted; if \code{"pairwise.complete.obs"), all valid cases are used
in each panel of the plot.}}
\item{pch}{plotting characters for points; default is the plotting characters in
order (see \code{\link{par}}).}
\item{col}{colors for points; the default is \code{\link{carPalette}} starting at the second color. The color of
the \code{regLine} and \code{smooth} are the same as for points but can be changed using the the
\code{regLine} and \code{smooth} arguments.}
\item{cex}{relative size of plotted points. You can use \code{cex = 0.001} to suppress the plotting of points if all you want to show are other graphical features, such as data ellipses, regression lines, smooths, etc. }
\item{cex.axis}{relative size of axis labels}
\item{cex.labels}{relative size of labels on the diagonal}
\item{cex.main}{relative size of the main title, if any}
\item{row1attop}{If \code{TRUE} (the default) the first row is at the top, as in a matrix, as
opposed to at the bottom, as in graph (argument suggested by Richard Heiberger).}
\item{...}{arguments to pass down.}
}
\details{
Many arguments to \code{scatterplotMatrix} were changed in version 3 of \pkg{car}, to simplify use of
this function.
The \code{smooth} argument is usually either set to \code{TRUE} or \code{FALSE} to draw, or omit,
the smoother. Alternatively \code{smooth} can be set to a list of arguments. The default behavior of
\code{smooth=TRUE} is equivalent to \code{smooth=list(smoother=loessLine, spread=TRUE, lty.smooth=1, lwd.smooth=1.5, lty.spread=3, lwd.spread=1)}, specifying the smoother to be used, including the spread or variance smooth,
and the line widths and types for the curves. You can also specify the colors you want to use for the mean and variance smooths with the arguments \code{col.smooth} and \code{col.spread}. Alternative smoothers are \code{gamline} which uses the
\code{\link[mgcv]{gam}} function from the \pkg{mgcv} package, and \code{quantregLine} which uses quantile regression to
estimate the median and quartile functions using \code{\link[quantreg]{rqss}} from the \pkg{quantreg} package. All of these
smoothers have one or more arguments described on their help pages, and these arguments can be added to the
\code{smooth} argument; for example, \code{smooth = list(span=1/2)} would use the default
\code{loessLine} smoother,
include the variance smooth, and change the value of the smoothing parameter to 1/2. For \code{loessLine}
and \code{gamLine} the variance smooth is estimated by separately
smoothing the squared positive and negative
residuals from the mean smooth, using the same type of smoother. The displayed curves are equal to
the mean smooth plus the square root of the fit to the positive squared residuals, and the mean fit minus
the square root of the smooth of the negative squared residuals. The lines therefore represent the
comnditional variabiliity at each value on the horizontal axis. Because smoothing is done separately for
positive and negative residuals, the variation shown will generally not be symmetric about the fitted mean
function. For the \code{quantregLine} method, the center estimates the median for each value on the
horizontal axis, and the spread estimates the lower and upper quartiles of the estimated conditional
distribution for each value of the horizontal axis.
The sub-arguments \code{spread}, \code{lty.spread} and \code{col.spread} of the \code{smooth} argument are equivalent to the newer \code{var}, \code{col.var} and \code{lty.var}, respectively, recognizing that the spread is a measuure of conditional variability.
By default the diagonal argument is used to draw kernel density estimates of the
variables by setting \code{diagonal=TRUE}, which is equivalent to setting \code{diagonal =
list(method="adaptiveDensity", bw=bw.nrd0, adjust=1, kernel=dnorm, na.rm=TRUE)}. The additional arguments
shown are descibed at \code{\link{adaptiveKernel}}. The other methods avaliable, with their default
arguments, are \code{diagonal=list(method="density", bw="nrd0", adjust=1, kernel="gaussian", na.rm=TRUE)}
which uses \code{\link{density}} for nonadaptive kernel density estimation; \code{diagonal=list(method
="histogram", breaks="FD")}
which uses \code{\link{hist}} for drawing a histogram that ignores grouping, if present;
\code{diagonal=list(method="boxplot")} with no additional arguments which draws (parallel) boxplots;
\code{diagonal=list(method="qqplot")} with no additional arguments which draws a normal QQ plot; and
\code{diagonal=list(method="oned")} with no additional arguments which draws a rug plot tilted to the
diagonal, as suggested by Richard Heiberger.
Earlier versions of \code{scatterplotMatrix} included arguments \code{transform} and \code{family} to estimate power transformations using the \code{\link{powerTransform}} function before drawing the plot. The same functionality can be achieved by calling \code{powerTransform} directly to estimate a transformation, saving the transformed variables, and then plotting.
}
\value{
\code{NULL}, returned invisibly. This function is used for its side effect: producing
a plot. If point identification is used, a vector of identified points is returned.
}
\author{John Fox \email{jfox@mcmaster.ca}}
\references{
Fox, J. and Weisberg, S. (2019)
\emph{An R Companion to Applied Regression}, Third Edition, Sage.
}
\seealso{\code{\link{pairs}}, \code{\link{scatterplot}},
\code{\link{dataEllipse}}, \code{\link{powerTransform}},
\code{\link{bcPower}}, \code{\link{yjPower}}, \code{\link[MASS]{cov.trob}},
\code{\link{showLabels}}, \code{\link{ScatterplotSmoothers}}.}
\examples{
scatterplotMatrix(~ income + education + prestige | type, data=Duncan)
scatterplotMatrix(~ income + education + prestige | type, data=Duncan,
regLine=FALSE, smooth=list(span=1))
scatterplotMatrix(~ income + education + prestige,
data=Duncan, id=TRUE, smooth=list(method=gamLine))
}
\keyword{hplot}
|