1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*
* Copyright 2013-2018 Fabian Groffen
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "queue.h"
struct _queue {
const char **queue;
size_t end;
size_t write;
size_t read;
size_t len;
pthread_mutex_t lock;
};
/**
* Allocates a new queue structure with capacity to hold size elements.
*/
queue *
queue_new(size_t size)
{
queue *ret = malloc(sizeof(queue));
if (ret == NULL)
return NULL;
ret->queue = malloc(sizeof(char *) * size);
if (ret->queue == NULL) {
free(ret);
return NULL;
}
memset(ret->queue, 0, sizeof(char *) * size);
ret->end = size;
ret->read = ret->write = 0;
ret->len = 0;
pthread_mutex_init(&ret->lock, NULL);
return ret;
}
/**
* Frees up allocated resources in use by the queue. This doesn't take
* into account any consumers at all. That is, the caller needs to
* ensure noone is using the queue any more.
*/
void
queue_destroy(queue *q)
{
const char *p;
/* drain queue not to leak the memory consumed by pending metrics */
while ((p = queue_dequeue(q)) != NULL)
free((char *)p);
q->len = 0;
pthread_mutex_destroy(&q->lock);
free(q->queue);
free(q);
}
/**
* Enqueues the string pointed to by p at queue q. If the queue is
* full, the oldest entry is dropped. For this reason, enqueuing will
* never fail. This function assumes the pointer p is a copy for this
* queue, that is returned on dequeue, or freed when dropped.
*/
void
queue_enqueue(queue *q, const char *p)
{
/* queue normal:
* |=====-----------------------------| 4
* ^ ^
* r w
* queue wrap:
* |===---------------------------====| 6
* ^ ^
* w r
* queue full
* |==================================| 23
* ^
* w+r
*/
pthread_mutex_lock(&q->lock);
if (q->len == q->end) {
if (q->read == q->end)
q->read = 0;
free((char *)(q->queue[q->read]));
q->read++;
q->len--;
}
if (q->write == q->end)
q->write = 0;
q->queue[q->write] = p;
q->write++;
q->len++;
pthread_mutex_unlock(&q->lock);
}
/**
* Returns the oldest entry in the queue. If there are no entries, NULL
* is returned. The caller should free the returned string.
*/
const char *
queue_dequeue(queue *q)
{
const char *ret;
pthread_mutex_lock(&q->lock);
if (q->len == 0) {
pthread_mutex_unlock(&q->lock);
return NULL;
}
if (q->read == q->end)
q->read = 0;
ret = q->queue[q->read++];
q->len--;
pthread_mutex_unlock(&q->lock);
return ret;
}
/**
* Returns at most len elements from the queue. Attempts to use a
* single lock to read a vector of elements from the queue to minimise
* effects of locking. Returns the number of elements stored in ret.
* The caller is responsible for freeing elements from ret, as well as
* making sure it is large enough to store len elements.
*/
size_t
queue_dequeue_vector(const char **ret, queue *q, size_t len)
{
size_t i;
pthread_mutex_lock(&q->lock);
if (q->len == 0) {
pthread_mutex_unlock(&q->lock);
return 0;
}
if (len > q->len)
len = q->len;
for (i = 0; i < len; i++) {
if (q->read == q->end)
q->read = 0;
ret[i] = q->queue[q->read++];
}
q->len -= len;
pthread_mutex_unlock(&q->lock);
return len;
}
/**
* Puts the entry p at the front of the queue, instead of the end, if
* there is space available in the queue. Returns 0 when no space is
* available, non-zero otherwise. Like queue_enqueue,
* queue_putback assumes pointer p points to a private copy for the
* queue.
*/
char
queue_putback(queue *q, const char *p)
{
pthread_mutex_lock(&q->lock);
if (q->len == q->end) {
pthread_mutex_unlock(&q->lock);
return 0;
}
if (q->read == 0)
q->read = q->end;
q->read--;
q->queue[q->read] = p;
q->len++;
pthread_mutex_unlock(&q->lock);
return 1;
}
/**
* Returns the (approximate) size of entries waiting to be read in the
* queue. The returned value cannot be taken accurate with multiple
* readers/writers concurrently in action. Hence it can only be seen as
* mere hint about the state of the queue.
*/
inline size_t
queue_len(queue *q)
{
size_t len;
pthread_mutex_lock(&q->lock);
len = q->len;
pthread_mutex_unlock(&q->lock);
return len;
}
/**
* Returns the (approximate) size of free entries in the queue. The
* same conditions as for queue_len apply.
*/
inline size_t
queue_free(queue *q)
{
return q->end - queue_len(q);
}
/**
* Returns the size of the queue.
*/
inline size_t
queue_size(queue *q)
{
return q->end;
}
|