File: CommandMetricClustering.cxx

package info (click to toggle)
caret 5.6.1.3~dfsg.1-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 23,352 kB
  • ctags: 27,394
  • sloc: cpp: 363,314; python: 6,718; ansic: 5,507; makefile: 227; sh: 9
file content (220 lines) | stat: -rw-r--r-- 8,227 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*LICENSE_START*/
/*
 *  Copyright 1995-2002 Washington University School of Medicine
 *
 *  http://brainmap.wustl.edu
 *
 *  This file is part of CARET.
 *
 *  CARET is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  CARET is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with CARET; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */
/*LICENSE_END*/

#include "BrainModelSurfaceMetricClustering.h"
#include "BrainSet.h"
#include "CommandMetricClustering.h"
#include "FileFilters.h"
#include "MetricFile.h"
#include "ProgramParameters.h"
#include "ScriptBuilderParameters.h"

/**
 * constructor.
 */
CommandMetricClustering::CommandMetricClustering()
   : CommandBase("-metric-clustering",
                 "METRIC CLUSTERING")
{
}

/**
 * destructor.
 */
CommandMetricClustering::~CommandMetricClustering()
{
}

/**
 * get the script builder parameters.
 */
void 
CommandMetricClustering::getScriptBuilderParameters(ScriptBuilderParameters& paramsOut) const
{
   std::vector<QString> values, descriptions;
   values.push_back("ANY_SIZE");   descriptions.push_back("Any Size");
   values.push_back("MINIMUM_NUMBER_OF_NODES");   descriptions.push_back("Minimum Number of Nodes");
   values.push_back("MINIMUM_SURFACE_AREA");   descriptions.push_back("Minimum Surface Area");

   paramsOut.clear();
   paramsOut.clear();
   paramsOut.addFile("Coordinate File Name", FileFilters::getCoordinateGenericFileFilter());
   paramsOut.addFile("Topology File Name", FileFilters::getTopologyGenericFileFilter());
   paramsOut.addFile("Input Metric File Name", FileFilters::getMetricFileFilter());
   paramsOut.addFile("Output Metric File Name", FileFilters::getMetricFileFilter());
   paramsOut.addFloat("Minimum Negative Threshold", -5.0);
   paramsOut.addFloat("Maximum Negative Threshold", -10.0);
   paramsOut.addFloat("Minimum Positive Threshold", 5.0);
   paramsOut.addFloat("Maximum Positive Threshold", 10.0);
   paramsOut.addListOfItems("Cluster Mode", values, descriptions);
   paramsOut.addInt("Minimum Number of Nodes", 25);
   paramsOut.addFloat("Minimum Surface Area", 25.0);
}

/**
 * get full help information.
 */
QString 
CommandMetricClustering::getHelpInformation() const
{
   QString helpInfo =
      (indent3 + getShortDescription() + "\n"
       + indent6 + parameters->getProgramNameWithoutPath() + " " + getOperationSwitch() + "  \n"
       + indent9 + "<coordinate-file-name>\n"
       + indent9 + "<topology-file-name>\n"
       + indent9 + "<input-metric-file-name>\n"
       + indent9 + "<output-metric-file-name>\n"
       + indent9 + "<minimum-negative-threshold>\n"
       + indent9 + "<maximum-negative-threshold>\n"
       + indent9 + "<minimum-positive-threshold>\n"
       + indent9 + "<maximum-positive-threshold>\n"
       + indent9 + "<cluster-mode>\n"
       + indent9 + "<cluster-minimum-number-of-node>\n"
       + indent9 + "<cluster-minimum-surface-area>\n"
       + indent9 + "\n"
       + indent9 + "Perform clustering on all columns in a metric file.\n"
       + indent9 + "\n"
       + indent9 + "\"cluster-mode\" must be one of:\n"
       + indent9 + "   ANY_SIZE\n"
       + indent9 + "   MINIMUM_NUMBER_OF_NODES\n"
       + indent9 + "   MINIMUM_SURFACE_AREA\n"
       + indent9 + "\n"
       + indent9 + "Note: The \"maximum-negative-threshold\" should be\n"
       + indent9 + "LESS THAN (more negative) than the \n"
       + indent9 + "\"minimum-negative-threshold\".\n"
       + indent9 + "\n");
      
   return helpInfo;
}

/**
 * execute the command.
 */
void 
CommandMetricClustering::executeCommand() throw (BrainModelAlgorithmException,
                                     CommandException,
                                     FileException,
                                     ProgramParametersException,
                                     StatisticException)
{
   const QString coordinateFileName =
      parameters->getNextParameterAsString("Coordinate File Name");
   const QString topologyFileName =
      parameters->getNextParameterAsString("Topology File Name");
   const QString inputMetricFileName =
      parameters->getNextParameterAsString("Input Metric File Name");
   const QString outputMetricFileName =
      parameters->getNextParameterAsString("Output Metric File Name");
   const float minimumNegativeThreshold =
      parameters->getNextParameterAsFloat("Minimum Negative Threshold");
   const float maximumNegativeThreshold =
      parameters->getNextParameterAsFloat("Maximum Negative Threshold");
   const float minimumPositiveThreshold =
      parameters->getNextParameterAsFloat("Minimum Positive Threshold");
   const float maximumPositiveThreshold =
      parameters->getNextParameterAsFloat("Maximum Positive Threshold");
   const QString modeName =
      parameters->getNextParameterAsString("Cluster Mode Name");
   const int minimumNumberOfNodes =
      parameters->getNextParameterAsInt("Minimum Number of Nodes");
   const float minimumSurfaceArea =
      parameters->getNextParameterAsFloat("Minimum Surface Area");
   checkForExcessiveParameters();
   
   //
   // Get algorithm
   //
   BrainModelSurfaceMetricClustering::CLUSTER_ALGORITHM clusterAlgorithm;
   if (modeName == "ANY_SIZE") {
      clusterAlgorithm = BrainModelSurfaceMetricClustering::CLUSTER_ALGORITHM_ANY_SIZE;
   }
   else if (modeName == "MINIMUM_SURFACE_AREA") {
      clusterAlgorithm = BrainModelSurfaceMetricClustering::CLUSTER_ALGORITHM_MINIMUM_SURFACE_AREA;
   }
   else if (modeName == "MINIMUM_NUMBER_OF_NODES") {
      clusterAlgorithm = BrainModelSurfaceMetricClustering::CLUSTER_ALGORITHM_MINIMUM_NUMBER_OF_NODES;
   }
   else {
      throw CommandException("Invalid mode: \""
                             + modeName
                             + "\"");
   }
   
   //
   // Create a brain set
   //
   BrainSet brainSet(topologyFileName,
                     coordinateFileName,
                     "",
                     true);
   BrainModelSurface* surface = brainSet.getBrainModelSurface(0);
   if (surface == NULL) {
      throw CommandException("unable to find surface.");
   }
   const TopologyFile* tf = surface->getTopologyFile();
   if (tf == NULL) {
      throw CommandException("unable to find topology.");
   }
   const int numNodes = surface->getNumberOfNodes();
   if (numNodes == 0) {
      throw CommandException("surface contains no nodes.");
   }
   
   //
   // Read input metric file
   //
   MetricFile metricFile;
   metricFile.readFile(inputMetricFileName);

   //
   // Perform clustering
   //
   const int numberOfColumns = metricFile.getNumberOfColumns();
   for (int i = 0; i < numberOfColumns; i++) {
      BrainModelSurfaceMetricClustering clustering(&brainSet,
                                                   surface,
                                                   &metricFile,
                                                   clusterAlgorithm,
                                                   i,
                                                   i,
                                                   metricFile.getColumnName(i),
                                                   minimumNumberOfNodes,
                                                   minimumSurfaceArea,
                                                   minimumNegativeThreshold,
                                                   maximumNegativeThreshold,
                                                   minimumPositiveThreshold,
                                                   maximumPositiveThreshold,
                                                   true);
      clustering.execute();
   }
   
   //
   // Write the metric file
   //
   metricFile.writeFile(outputMetricFileName);
}