1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*LICENSE_START*/
/*
* Copyright 1995-2002 Washington University School of Medicine
*
* http://brainmap.wustl.edu
*
* This file is part of CARET.
*
* CARET is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* CARET is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CARET; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*LICENSE_END*/
#include <iostream>
#include <cmath>
#include "CommandSurfaceShrinkToProbVol.h"
#include "FileFilters.h"
#include "ProgramParameters.h"
#include "ScriptBuilderParameters.h"
#include "BrainModelVolumeLigaseSegmentation.h"
#include "BrainSet.h"
#include "StringUtilities.h"
#include "BrainModelSurface.h"
#include "BrainModelSurfaceToVolumeSegmentationConverter.h"
#include "BrainModelVolumeGradient.h"
#include "VectorFile.h"
#include "VolumeFile.h"
/**
* constructor.
*/
CommandSurfaceShrinkToProbVol::CommandSurfaceShrinkToProbVol()
: CommandBase("-surface-shrink-to-prob-vol",
"SURFACE SHRINK TO PROBABILISTIC VOLUME")
{
}
/**
* destructor.
*/
CommandSurfaceShrinkToProbVol::~CommandSurfaceShrinkToProbVol()
{
}
/**
* get the script builder parameters.
*/
void
CommandSurfaceShrinkToProbVol::getScriptBuilderParameters(ScriptBuilderParameters& paramsOut) const
{
paramsOut.clear();
}
/**
* get full help information.
*/
QString
CommandSurfaceShrinkToProbVol::getHelpInformation() const
{
QString helpInfo =
(indent3 + getShortDescription() + "\n"
+ indent6 + parameters->getProgramNameWithoutPath() + " " + getOperationSwitch() + " \n"
+ indent9 + "<input-topo-file>\n"
+ indent9 + "<input-coord-file>\n"
+ indent9 + "<input-probabilistic-boundary-volume>\n"
+ indent9 + "<output-segmentation-volume>\n"
+ indent9 + "<output-volume-label>\n"
+ indent9 + "<iterations>\n"
+ indent9 + "\n"
+ indent9 + "Generate a segmentation by moving the surface inwards to probability peaks\n"
+ indent9 + "\n"
+ indent9 + " iterations number of times to grow inwards, each time a maximum of\n"
+ indent9 + " one erosion of the segmentation.\n"
+ indent9 + "\n");
return helpInfo;
}
/**
* execute the command.
*/
void
CommandSurfaceShrinkToProbVol::executeCommand() throw (BrainModelAlgorithmException,
CommandException,
FileException,
ProgramParametersException,
StatisticException)
{
const QString inputSurfaceTopoName =
parameters->getNextParameterAsString("Input Surface Topo Name");
const QString inputSurfaceCoordName =
parameters->getNextParameterAsString("Input Surface Coord Name");
const QString inputVolumeFileName =
parameters->getNextParameterAsString("Input Probabilistic Volume File Name");
const QString outputVolumeFileName =
parameters->getNextParameterAsString("Output Segmentation Volume File Name");
const QString outputVolumeLabel =
parameters->getNextParameterAsString("Output Segmentation Volume Label");
const int numberOfIterations =
parameters->getNextParameterAsInt("Number of Iterations");
checkForExcessiveParameters();
//
// Create a brain set
//
BrainSet brainSet(inputSurfaceTopoName, inputSurfaceCoordName);
//
// Read the input files
//
BrainModelSurface* inputSurf = brainSet.getBrainModelSurface(0);
inputSurf->computeNormals();
inputSurf->orientNormalsOut();
VolumeFile inputVol;
inputVol.readFile(inputVolumeFileName);
//
// Create output volume file
//
VolumeFile segVolume(inputVol);
segVolume.setVolumeType(VolumeFile::VOLUME_TYPE_SEGMENTATION);
segVolume.setFileComment(outputVolumeLabel);
int i, j, k, ti, tj, tk, max_i, max_j, max_k, total_nodes = inputSurf->getNumberOfNodes(), index;
inputVol.getDimensions(max_i, max_j, max_k);
//
// Generate initial segmentation from surface
//
BrainModelSurfaceToVolumeSegmentationConverter* bmsvsc = new BrainModelSurfaceToVolumeSegmentationConverter(&brainSet, inputSurf, &segVolume, true, false);
bmsvsc->execute();
delete bmsvsc;
//
// Take the gradient of the probability volume to get directionality easily, and the benefits of the filtering/unbiased directionality
//
VectorFile prob_grad(max_i, max_j, max_k);
BrainModelVolumeGradient* bmvg = new BrainModelVolumeGradient(&brainSet, 5, true, false, &inputVol, &segVolume, &prob_grad);
std::cout << "starting gradient" << std::endl;
bmvg->execute();
std::cout << "gradient done" << std::endl;
delete bmvg;
//
// Voxels not considered in the iteration and voxels that failed to erode, which will not erode with another test
//
VolumeFile voxelsToLeave, voxelsFailed(segVolume);
voxelsFailed.setAllVoxels(0.0f);
int coord_length = 3 * total_nodes;
float ii, ij, ik, min, temp, tempa, tempb, spacing[3], tempCoord[3], *coord = new float[coord_length];
const float* normals = inputSurf->getNormal(0);//silly hack to get flat array of normals
float thisVal, tempVec[3], tempFloat[3], avgspace, weight;
inputSurf->getCoordinateFile()->getAllCoordinates(coord);
inputVol.getSpacing(spacing);
avgspace = pow(spacing[0] * spacing[1] * spacing[2], 1.0f / 3.0f);//geometric average of spacing to estimate "1 voxel away" in stereotaxic space (mm)
for (int iter = 0; iter < numberOfIterations; ++iter)
{
voxelsToLeave = segVolume;
voxelsToLeave.doVolMorphOps(0, 1);//erode
for (i = 0; i < max_i; ++i)
{
for (j = 0; j < max_j; ++j)
{
for (k = 0; k < max_k; ++k)
{
if (segVolume.getVoxel(i, j, k) > 1.0f && voxelsToLeave.getVoxel(i, j, k) < 1.0f && voxelsFailed.getVoxel(i, j, k) < 1.0f)
{
//
// Voxel is in current segmentation, not in the eroded segmentation, and hasn't been tested before, so try it
//
inputVol.getVoxelCoordinate(i, j, k, tempCoord);
index = 0;
temp = coord[0] - tempCoord[0];
tempa = coord[1] - tempCoord[1];
tempb = coord[2] - tempCoord[2];
min = temp * temp + tempa * tempa + tempb * tempb;
//
// Find closest surface node
//
for (int node = 3; node < coord_length; node += 3)//NOTE: could be optimized by indexing to find closest node without searching all
{//however, that may weaken the stand that the closest node will always be found. Index by surface or volume?
temp = coord[node] - tempCoord[0];
tempa = coord[node + 1] - tempCoord[1];
tempb = coord[node + 2] - tempCoord[2];
temp = temp * temp + tempa * tempa + tempb * tempb;
if (temp < min)
{
min = temp;
index = node;
}
}
prob_grad.getVector(i, j, k, tempVec);
//
// Dot product of normal at closest node and vector at voxel
//
thisVal = normals[index] * tempVec[0] + normals[index + 1] * tempVec[1] + normals[index + 2] * tempVec[2];
//evaluate identical fitness calculation at other node, but using same normal
/*ti = i - (int)(normals[index] * 1.9999f);//HACK: multiply by 2, cast to int equals round to integer for (-1, 1)
tj = j - (int)(normals[index + 1] * 1.9999f);
tk = k - (int)(normals[index + 2] * 1.9999f);
inputVol.getVoxelCoordinate(ti, tj, tk, tempCoord);*///replaced by interpolation
/*tempCoord[0] -= normals[index] * avgspace;//coordinates used only for searching for closest node
tempCoord[1] -= normals[index + 1] * avgspace;
tempCoord[2] -= normals[index + 2] * avgspace;*///not used, because using the same normal as the testing voxel
//
// Interpolate the gradient vector at voxel by interpolating each component separately, with no curvature
//
tempVec[0] = tempVec[1] = tempVec[2] = 0.0f;
ii = i - normals[index] * avgspace / spacing[0];//"index" to interpolate, this is NOT a coordinate, adjusts the "one voxel away" vector back
ij = j - normals[index + 1] * avgspace / spacing[1];//into index space
ik = k - normals[index + 2] * avgspace / spacing[2];
for (ti = (int)floor(ii); ti <= (int)ceil(ii); ++ti)
{
for (tj = (int)floor(ij); tj <= (int)ceil(ij); ++tj)
{
for (tk = (int)floor(ik); tk <= (int)ceil(ik); ++tk)
{
prob_grad.getVector(ti, tj, tk, tempFloat);
weight = fabs(tempCoord[0] - ti) * fabs(tempCoord[1] - tj) * fabs(tempCoord[2] - tk);//linear weighting in all directions
tempVec[0] += tempFloat[0] * weight;
tempVec[1] += tempFloat[1] * weight;
tempVec[2] += tempFloat[2] * weight;
}
}
}
/*index = 0;//search for closest node to new coordinate is BAD with a capital BAD for thin white matter
temp = coord[0] - tempCoord[0];
tempa = coord[1] - tempCoord[1];
tempb = coord[2] - tempCoord[2];
min = temp * temp + tempa * tempa + tempb * tempb;
for (int node = 3; node < coord_length; node += 3)
{
temp = coord[node] - tempCoord[0];
tempa = coord[node + 1] - tempCoord[1];
tempb = coord[node + 2] - tempCoord[2];
temp = temp * temp + tempa * tempa + tempb * tempb;
if (temp < min)
{
min = temp;
index = node;
}
}*/
if (thisVal < 0.0f)//if the gradient says go inwards
{
//if the dot product of probability gradient and outward surface normal is farther from the peak than the neighbor voxel
//in the opposite direction from the surface normal, erode this voxel
//essentially, if following the inward normal would end up farther down the inside slope of the probability peak, dont erode
//NOTE: negative values mean gradient is inward (opposed to outward normals)
if (thisVal < -(normals[index] * tempVec[0] + normals[index + 1] * tempVec[1] + normals[index + 2] * tempVec[2]))
{
segVolume.setVoxel(i, j, k, 0, 0.0f);
} else {
voxelsFailed.setVoxel(i, j, k, 0, 255.0f);
}
} else {
//if the gradient says go outwards, but the next voxel says inwards or less strongly outwards, erode
//bad for thin white matter
/*if (normals[index] * tempVec[0] + normals[index + 1] * tempVec[1] + normals[index + 2] * tempVec[2] < thisVal)
{
segVolume.setVoxel(i, j, k, 0, 0.0f);
} else {*/
voxelsFailed.setVoxel(i, j, k, 0, 255.0f);
//}
}
}
}
}
}
}
//
// Write the file
//
segVolume.writeFile(outputVolumeFileName);
}
|