File: CommandVolumeGradient.cxx

package info (click to toggle)
caret 5.6.1.3~dfsg.1-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 23,352 kB
  • ctags: 27,394
  • sloc: cpp: 363,314; python: 6,718; ansic: 5,507; makefile: 227; sh: 9
file content (147 lines) | stat: -rw-r--r-- 4,286 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*LICENSE_START*/
/*
 *  Copyright 1995-2002 Washington University School of Medicine
 *
 *  http://brainmap.wustl.edu
 *
 *  This file is part of CARET.
 *
 *  CARET is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  CARET is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with CARET; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */
/*LICENSE_END*/

#include "BrainModelVolumeGradient.h"
#include "BrainSet.h"
#include "CommandVolumeGradient.h"
#include "FileFilters.h"
#include "ProgramParameters.h"
#include "ScriptBuilderParameters.h"
#include "SureFitVectorFile.h"
#include "VolumeFile.h"

/**
 * constructor.
 */
CommandVolumeGradient::CommandVolumeGradient()
   : CommandBase("-volume-gradient",
                 "VOLUME GRADIENT")
{
}

/**
 * destructor.
 */
CommandVolumeGradient::~CommandVolumeGradient()
{
}

/**
 * get the script builder parameters.
 */
void 
CommandVolumeGradient::getScriptBuilderParameters(ScriptBuilderParameters& paramsOut) const
{
   paramsOut.clear();
   paramsOut.addFile("Input Volume File Name", FileFilters::getVolumeGenericFileFilter());
   paramsOut.addFile("Mask Volume File Name", FileFilters::getVolumeGenericFileFilter());
   paramsOut.addFile("Output Gradient Vector File", FileFilters::getSureFitVectorFileFilter());
   paramsOut.addInt("Lambda");
   paramsOut.addBoolean("Grad Flag");
   paramsOut.addBoolean("Mask Flag");
}

/**
 * get full help information.
 */
QString 
CommandVolumeGradient::getHelpInformation() const
{
   QString helpInfo =
      (indent3 + getShortDescription() + "\n"
       + indent6 + parameters->getProgramNameWithoutPath() + " " + getOperationSwitch() + "  \n"
       + indent9 + "<input-volume-file>\n"
       + indent9 + "<input-mask-volume-file>\n"
       + indent9 + "<gradient-vector-file-name>\n"
       + indent9 + "<lambda>\n"
       + indent9 + "<grad-flag>\n"
       + indent9 + "<mask-flag>\n"
       + indent9 + "\n"
       + indent9 + "Compute gradient.\n"
       + indent9 + "\n");
      
   return helpInfo;
}

/**
 * execute the command.
 */
void 
CommandVolumeGradient::executeCommand() throw (BrainModelAlgorithmException,
                                     CommandException,
                                     FileException,
                                     ProgramParametersException,
                                     StatisticException)
{
   const QString inputVolumeFileName =
      parameters->getNextParameterAsString("Input Volume File Name");
   const QString inputMaskVolumeFileName =
      parameters->getNextParameterAsString("Input Mask Volume File Name");
   const QString outputGradientFileName =
      parameters->getNextParameterAsString("Output Gradient Vector File Name");
   const int lambda =
      parameters->getNextParameterAsInt("Lambda");
   const int gradFlag =
      parameters->getNextParameterAsBoolean("Grad Flag");
   const int maskFlag =
      parameters->getNextParameterAsBoolean("Mask Flag");

   //
   // Read the input and mask volume files
   //
   VolumeFile vf;
   vf.readFile(inputVolumeFileName);
   VolumeFile maskVolume;
   maskVolume.readFile(inputMaskVolumeFileName);

   //
   // Gradient vector file
   //
   int xDim, yDim, zDim;
   vf.getDimensions(xDim, yDim, zDim);
   SureFitVectorFile gradFile(xDim, yDim, zDim);
   
   //
   // determine gradient
   //
   BrainSet bs;
   BrainModelVolumeGradient grad(&bs,
                                 lambda,
                                 gradFlag,
                                 maskFlag,
                                 &vf,
                                 &maskVolume,
                                 &gradFile);
   grad.execute();
   
   //
   // Write the gradient file
   //
   gradFile.writeFile(outputGradientFileName);
   
}