1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
/*LICENSE_START*/
/*
* Copyright 1995-2002 Washington University School of Medicine
*
* http://brainmap.wustl.edu
*
* This file is part of CARET.
*
* CARET is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* CARET is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CARET; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*LICENSE_END*/
#include <limits>
#include <sstream>
#include <QDateTime>
#include "BrainModelSurface.h"
#include "BrainModelSurfaceMetricAnovaOneWay.h"
#include "DateAndTime.h"
#include "FileUtilities.h"
#include "MetricFile.h"
#include "StatisticAnovaOneWay.h"
#include "StatisticDataGroup.h"
/**
* constructor.
*/
BrainModelSurfaceMetricAnovaOneWay::BrainModelSurfaceMetricAnovaOneWay(BrainSet* bs,
const std::vector<QString>& inputMetricFileNamesIn,
const QString& fiducialCoordFileNameIn,
const QString& openTopoFileNameIn,
const QString& areaCorrectionShapeFileNameIn,
const QString& fMapFileNameIn,
const QString& shuffledFMapFileNameIn,
const QString& clustersPaintFileNameIn,
const QString& clustersMetricFileNameIn,
const QString& reportFileNameIn,
const int areaCorrectionShapeFileColumnIn,
const int iterationsIn,
const float positiveThreshIn,
const float pValueIn,
const bool doFMapDOFIn,
const bool doFMapPValueIn,
const int numberOfThreadsIn)
: BrainModelSurfaceMetricFindClustersBase(bs,
fiducialCoordFileNameIn,
openTopoFileNameIn,
areaCorrectionShapeFileNameIn,
fMapFileNameIn,
shuffledFMapFileNameIn,
clustersPaintFileNameIn,
clustersMetricFileNameIn,
reportFileNameIn,
areaCorrectionShapeFileColumnIn,
-std::numeric_limits<float>::max(), // no neg
positiveThreshIn,
pValueIn,
0,
0.0,
doFMapDOFIn,
doFMapPValueIn,
numberOfThreadsIn)
{
inputMetricFileNames = inputMetricFileNamesIn;
iterations = iterationsIn;
}
/**
* destructor.
*/
BrainModelSurfaceMetricAnovaOneWay::~BrainModelSurfaceMetricAnovaOneWay()
{
for (unsigned int i = 0; i < inputMetricFiles.size(); i++) {
delete inputMetricFiles[i];
inputMetricFiles[i] = NULL;
}
inputMetricFiles.clear();
for (unsigned int i = 0; i < shuffledMetricFiles.size(); i++) {
delete shuffledMetricFiles[i];
shuffledMetricFiles[i] = NULL;
}
shuffledMetricFiles.clear();
}
/**
* must be implemented by subclasses.
*/
void
BrainModelSurfaceMetricAnovaOneWay::executeClusterSearch() throw (BrainModelAlgorithmException)
{
//
// Steps in algorithm
//
enum {
ALG_STEP_CHECKING_INPUT,
ALG_STEP_F_MAP,
ALG_STEP_SHUFFLED_F_MAP,
ALG_STEP_FINDING_CLUSTERS_F_MAP,
ALG_STEP_FINDING_CLUSTERS_SHUFFLED_F_MAP,
ALG_NUM_STEPS
};
//
// Initialize the progress dialog
//
createProgressDialog("One-Way ANOVA",
ALG_NUM_STEPS,
"BrainModelSurfaceMetricAnovaOneWay");
updateProgressDialog("Verifying Input",
ALG_STEP_CHECKING_INPUT,
ALG_NUM_STEPS);
//
// Read the input files
//
const int numInputFiles = static_cast<int>(inputMetricFileNames.size());
if (numInputFiles < 2) {
throw BrainModelAlgorithmException("There must be at least two input metric files.");
}
inputMetricFiles.resize(numInputFiles);
for (int i = 0; i < numInputFiles; i++) {
inputMetricFiles[i] = new MetricFile;
try {
inputMetricFiles[i]->readFile(inputMetricFileNames[i]);
}
catch (FileException& e) {
throw BrainModelAlgorithmException(e);
}
}
//
// Verify number of nodes and columns
//
const int numberOfNodes = bms->getNumberOfNodes();
std::vector<int> numberOfColumns(numInputFiles, 0);
for (int i = 0; i < numInputFiles; i++) {
if (inputMetricFiles[i]->getNumberOfNodes() != numberOfNodes) {
const QString msg("Files have different number of nodes: \n"
+ FileUtilities::basename(inputMetricFileNames[0])
+ " AND "
+ FileUtilities::basename(inputMetricFileNames[i]));
throw BrainModelAlgorithmException(msg);
}
const int numCols = inputMetricFiles[i]->getNumberOfColumns();
if (numCols <= 0) {
const QString msg(FileUtilities::basename(inputMetricFileNames[i])
+ " contains no data columns.");
throw BrainModelAlgorithmException(msg);
}
numberOfColumns[i] = numCols;
}
if (numberOfNodes != areaCorrectionShapeFile->getNumberOfNodes()) {
throw BrainModelAlgorithmException("Area correction shape file has different number of nodes"
"than the coordinate file.");
}
//
// check iterations
//
if (iterations < 0) {
throw BrainModelAlgorithmException("Iterations must be positive.");
}
//
// Update progress
//
updateProgressDialog("Doing F-Map",
ALG_STEP_F_MAP,
ALG_NUM_STEPS);
//
// Create the F-Map Metric (output) File
//
int numOutputColumns = 0;
const int fStatisticColumn = numOutputColumns++;
int dofColumn = -1;
if (doStatisticalMapDOF) {
dofColumn = numOutputColumns++;
}
int pValueColumn = -1;
if (doStatisticalMapPValue) {
pValueColumn = numOutputColumns++;
}
statisticalMapShapeFile = new MetricFile;
statisticalMapShapeFile->setNumberOfNodesAndColumns(numberOfNodes, numOutputColumns);
//
// Set the file comment
//
QString fileComment("One way ANOVA for files: \n");
for (int i = 0; i < numInputFiles; i++) {
fileComment += (" "
+ FileUtilities::basename(inputMetricFiles[i]->getFileName())
+ "\n");
}
statisticalMapShapeFile->setFileComment(fileComment);
//
// Create the F-Statistic Metric file
//
performFTest(inputMetricFiles,
statisticalMapShapeFile,
fStatisticColumn,
dofColumn,
pValueColumn);
//
// Write the F-Statistic metric file
//
try {
statisticalMapShapeFile->writeFile(statisticalMapFileName);
}
catch (FileException& e) {
throw BrainModelAlgorithmException(e);
}
//
// Should a shuffled Statstical Map be created
//
if (iterations > 0) {
//
// Update progress
//
updateProgressDialog("Doing Shuffled F-Map",
ALG_STEP_SHUFFLED_F_MAP,
ALG_NUM_STEPS);
//
// Create shuffled statistical map metric file
//
shuffleStatisticalMapShapeFile = new MetricFile;
shuffleStatisticalMapShapeFile->setNumberOfNodesAndColumns(numberOfNodes,
iterations);
//
// Create metric files that will be the output of the shuffle process
//
for (int i = 0; i < numInputFiles; i++) {
shuffledMetricFiles.push_back(new MetricFile(*inputMetricFiles[i]));
}
//
// Perform for specified number of iterations
//
for (int i = 0; i < iterations; i++) {
//
// Shuffle the input files
//
try {
MetricFile::shuffle(inputMetricFiles, shuffledMetricFiles);
}
catch (FileException& e) {
throw BrainModelAlgorithmException(e);
}
//
// Create the F-Statistic
//
performFTest(shuffledMetricFiles,
shuffleStatisticalMapShapeFile,
i,
-1,
-1);
}
//
// Write the shuffled F-Statistic metric file
//
try {
shuffleStatisticalMapShapeFile->writeFile(shuffledStatisticalMapFileName);
}
catch (FileException& e) {
throw BrainModelAlgorithmException(e);
}
//
// Update progress
//
updateProgressDialog("Finding Clusters in F-Map",
ALG_STEP_FINDING_CLUSTERS_F_MAP,
ALG_NUM_STEPS);
//
// find the clusters in F-Map
// Note: column 2 is the F-Map
//
std::vector<Cluster> fMapClusters;
findClusters(statisticalMapShapeFile, fMapClusters, "Finding Clusters in F-Map",
fStatisticColumn, false);
//
// Update progress
//
updateProgressDialog("Finding Clusters in Shuffled F-Map",
ALG_STEP_FINDING_CLUSTERS_SHUFFLED_F_MAP,
ALG_NUM_STEPS);
//
// find the clusters in Shuffled F-Map
// Note: Only use largest cluster from each column
//
std::vector<Cluster> shuffleFMapClusters;
findClusters(shuffleStatisticalMapShapeFile, shuffleFMapClusters, "Finding Clusters in Shuffled F-Map",
-1, true);
//
// Set pValue for shuffled T-Map
//
setRandomizedClusterPValues(*shuffleStatisticalMapShapeFile,
shuffleFMapClusters);
//
// Find area of the "P-Value" cluster in the shuffled F-Map
//
float significantCorrectedArea = std::numeric_limits<float>::max();
int pValueClusterIndex = -1;
if (shuffleFMapClusters.empty() == false) {
pValueClusterIndex = std::min(static_cast<int>(pValue * iterations) - 1,
static_cast<int>(shuffleFMapClusters.size()));
pValueClusterIndex = std::max(pValueClusterIndex, 0);
}
if (pValueClusterIndex >= 0) {
significantCorrectedArea = shuffleFMapClusters[pValueClusterIndex].areaCorrected;
}
//
// Find P-Value for significant clusters in T-Map
//
for (unsigned int i = 0; i < fMapClusters.size(); i++) {
Cluster& fMapCluster = fMapClusters[i];
int cnt = shuffleFMapClusters.size() - 1;
if (shuffleFMapClusters.empty() == false) {
if (fMapCluster.areaCorrected > shuffleFMapClusters[0].areaCorrected) {
cnt = 1;
}
else {
for (unsigned int j = 0; j < shuffleFMapClusters.size() - 1; j++) {
if ((fMapCluster.areaCorrected < shuffleFMapClusters[j].areaCorrected) &&
(fMapCluster.areaCorrected >= shuffleFMapClusters[j+1].areaCorrected)) {
cnt = j + 2;
}
}
}
}
cnt = std::min(cnt, iterations);
fMapCluster.pValue = static_cast<float>(cnt)
/ static_cast<float>(iterations);
}
//
// For each F-Map that has area corrected that exceeds significant area
// Find its rank in shuffled tmap
// P-value = rank / iterations
//
// Option for paint file to show the clusters
//
// Open the report file
//
QFile reportFile(reportFileName);
if (reportFile.open(QIODevice::WriteOnly) == false) {
std::ostringstream str;
str << "Unable to open report file for writing: "
<< FileUtilities::basename(reportFileName).toAscii().constData();
cleanUp();
throw BrainModelAlgorithmException(str.str().c_str());
}
//
// Create the text stream
//
QTextStream reportStream(&reportFile);
//
// Show area and thresholds
//
reportStream << "Date/Time: " << DateAndTime::getDateAndTimeAsString() << "\n";
for (int m = 0; m < numInputFiles; m++) {
reportStream << "Shape File : " << inputMetricFileNames[m] << "\n";
}
reportStream << "Fiducial Coord File: " << fiducialCoordFileName << "\n";
reportStream << "Open Topo File: " << openTopoFileName << "\n";
if ((areaCorrectionShapeFile != NULL) ||
(areaCorrectionShapeFileColumn >= 0)) {
reportStream << "Area Correct File: " << areaCorrectionShapeFileName << "\n";
reportStream << "Area Correct Column: " << areaCorrectionShapeFile->getColumnName(areaCorrectionShapeFileColumn) << "\n";
}
reportStream << "Positive Threshold: " << positiveThresh << "\n";
reportStream << "Iterations: " << iterations << "\n";
reportStream << "P-Value: " << pValue << "\n";
reportStream << "Significant Area: " << significantCorrectedArea << "\n";
reportStream << "\n";
//
// Add significant clusters to report file
//
reportStream << "Shuffled FMap" << "\n";
reportStream << "-------------" << "\n";
printClusters(reportStream, shuffleFMapClusters, significantCorrectedArea);
reportStream << "\n\n\n";
reportStream << "TMap" << "\n";
reportStream << "----" << "\n";
printClusters(reportStream, fMapClusters, significantCorrectedArea);
reportStream << "\n\n\n";
//
// Add all clusters to report file
//
reportStream << "Shuffled FMap" << "\n";
reportStream << "-------------" << "\n";
printClusters(reportStream, shuffleFMapClusters);
reportStream << "\n\n\n";
reportStream << "FMap" << "\n";
reportStream << "----" << "\n";
printClusters(reportStream, fMapClusters);
//
// Close the report file
//
reportFile.close();
//
// Do the clusters paint file
//
createClustersPaintFile(fMapClusters, significantCorrectedArea, numberOfNodes);
//
// Do the clusters metric file
//
createClustersMetricFile(fMapClusters, fStatisticColumn, numberOfNodes);
//
// Do cluster reports
//
for (unsigned int i = 0; i < inputMetricFileNames.size(); i++) {
createMetricShapeClustersReportFile(fMapClusters,
inputMetricFileNames[i]);
}
} // if (iterations > 0
}
void
BrainModelSurfaceMetricAnovaOneWay::performFTest(const std::vector<MetricFile*>& metricFiles,
MetricFile* outputMetricFile,
const int fStatisticColumn,
const int dofColumn,
const int pValueColumn) throw (BrainModelAlgorithmException)
{
const int numberOfNodes = metricFiles[0]->getNumberOfNodes();
const int numInputFiles = static_cast<int>(metricFiles.size());
//
// Set column names
//
outputMetricFile->setColumnName(fStatisticColumn, "F-Statistic");
if (dofColumn >= 0) {
outputMetricFile->setColumnName(dofColumn, "DOF");
}
if (pValueColumn >= 0) {
outputMetricFile->setColumnName(pValueColumn, "P-Value");
}
//
// Loop through the nodes and create the F-Statistic for each node
//
for (int i = 0; i < numberOfNodes; i++) {
StatisticAnovaOneWay anova;
//
// Create the data groups and add them to the algorithm
//
for (int j = 0; j < numInputFiles; j++) {
//
// Note, the anova algorithm will take care of deleting everything
//
const int numData = metricFiles[j]->getNumberOfColumns();
float* data = new float[numData];
metricFiles[j]->getAllColumnValuesForNode(i, data);
StatisticDataGroup* sdg = new StatisticDataGroup(data,
numData,
StatisticDataGroup::DATA_STORAGE_MODE_TAKE_OWNERSHIP);
anova.addDataGroup(sdg, true);
}
//
// Execute the one-way anova algorithm
//
try {
anova.execute();
}
catch (StatisticException& e) {
throw BrainModelAlgorithmException(e);
}
//
// Get the outputs of the anova algorithm
//
outputMetricFile->setValue(i, fStatisticColumn, anova.getFStatistic());
if (dofColumn >= 0) {
outputMetricFile->setValue(i, dofColumn, anova.getDegreesOfFreedomTotal());
}
if (pValueColumn >= 0) {
outputMetricFile->setValue(i, pValueColumn, anova.getPValue());
}
}
}
|