File: BrainModelSurfaceMetricClustering.cxx

package info (click to toggle)
caret 5.6.4~dfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 31,904 kB
  • ctags: 28,901
  • sloc: cpp: 378,050; python: 6,718; ansic: 5,507; makefile: 333; sh: 46
file content (537 lines) | stat: -rw-r--r-- 16,586 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*LICENSE_START*/
/*
 *  Copyright 1995-2002 Washington University School of Medicine
 *
 *  http://brainmap.wustl.edu
 *
 *  This file is part of CARET.
 *
 *  CARET is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  CARET is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with CARET; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */
/*LICENSE_END*/

#include <algorithm>
#include <iostream>
#include <limits>

#include <QDateTime>

#include "BrainModelSurface.h"
#include "BrainModelSurfaceConnectedSearchMetric.h"
#include "BrainModelSurfaceMetricClustering.h"
#include "DebugControl.h"
#include "MathUtilities.h"
#include "MetricFile.h"
#include "TopologyFile.h"
#include "TopologyHelper.h"
#include "ValueIndexSort.h"

/**
 * Constructor.
 */
BrainModelSurfaceMetricClustering::BrainModelSurfaceMetricClustering(BrainSet* bs,
                                    const BrainModelSurface* bmsIn,
                                    MetricFile* metricFileIn,
                                    const CLUSTER_ALGORITHM algorithmIn,
                                    const int inputColumnIn, 
                                    const int outputColumnIn,
                                    const QString& outputColumnNameIn,
                                    const int minimumNumberOfNodesIn,
                                    const float minimumSurfaceAreaIn,
                                    const float clusterNegativeMinimumThresholdIn,
                                    const float clusterNegativeMaximumThresholdIn,
                                    const float clusterPositiveMinimumThresholdIn,
                                    const float clusterPositiveMaximumThresholdIn,
                                    const bool outputAllClustersFlagIn)
   : BrainModelAlgorithm(bs),
     bms(bmsIn),
     metricFile(metricFileIn),
     algorithm (algorithmIn),
     inputColumn(inputColumnIn),
     outputColumn(outputColumnIn),
     outputColumnName(outputColumnNameIn),
     minimumNumberOfNodes(minimumNumberOfNodesIn),
     minimumSurfaceArea(minimumSurfaceAreaIn),
     clusterNegativeMinimumThreshold(clusterNegativeMinimumThresholdIn),
     clusterNegativeMaximumThreshold(clusterNegativeMaximumThresholdIn),
     clusterPositiveMinimumThreshold(clusterPositiveMinimumThresholdIn),
     clusterPositiveMaximumThreshold(clusterPositiveMaximumThresholdIn),
     outputAllClustersFlag(outputAllClustersFlagIn)
{
}

/**
 * Destructor.
 */
BrainModelSurfaceMetricClustering::~BrainModelSurfaceMetricClustering()
{
   clusters.clear();
}

/**
 * execute the algorithm.
 */
void 
BrainModelSurfaceMetricClustering::execute() throw (BrainModelAlgorithmException)
{
   //
   // Check for valid input column
   //
   if ((metricFile->getNumberOfColumns() <= 0) || 
       (metricFile->getNumberOfNodes() <= 0)) {
      throw BrainModelAlgorithmException("Metric file has no data");
   }
   
   if ((inputColumn < 0) || (inputColumn >= metricFile->getNumberOfColumns())) {
      throw BrainModelAlgorithmException("Invalid input column number");
   }
   
   //
   // Create a new column if needed.
   //
   if ((outputColumn < 0) || (outputColumn >= metricFile->getNumberOfColumns())){
      metricFile->addColumns(1);
      outputColumn = metricFile->getNumberOfColumns() - 1;
   }
   metricFile->setColumnName(outputColumn, outputColumnName);
   
   //
   // Copy the input column to the output column
   //
   if (inputColumn != outputColumn) {
      std::vector<float> values;
      metricFile->getColumnForAllNodes(inputColumn, values);
      metricFile->setColumnForAllNodes(outputColumn, values);
   }
   
   //
   // Node within threshold flags
   //
   const int numNodes = bms->getNumberOfNodes();
   nodeWithinThresholds.resize(numNodes);
   
   //
   // Get a toplogy helper
   //
   const TopologyFile* tf = bms->getTopologyFile();
   const TopologyHelper* th = tf->getTopologyHelper(false, true, false);
   
   //
   // Find nodes that are within thresholds
   //
   for (int i = 0; i < numNodes; i++) {
      nodeWithinThresholds[i] = false;
      if (th->getNodeHasNeighbors(i)) {
         float v = metricFile->getValue(i, outputColumn);
         if ((v >= clusterPositiveMinimumThreshold) && 
             (v <= clusterPositiveMaximumThreshold)) {
            nodeWithinThresholds[i] = true;
         }
         if ((v <= clusterNegativeMinimumThreshold) && 
             (v >= clusterNegativeMaximumThreshold)) {
            nodeWithinThresholds[i] = true;
         }
      }
   }
   
   
   switch (algorithm) {
      case CLUSTER_ALGORITHM_NONE:
         throw BrainModelAlgorithmException("Invalid clustering algorithm = NONE");
         break;
      case CLUSTER_ALGORITHM_ANY_SIZE:
         break;
      case CLUSTER_ALGORITHM_MINIMUM_NUMBER_OF_NODES:
      case CLUSTER_ALGORITHM_MINIMUM_SURFACE_AREA:
         //
         // Find the clusters
         // Note find clusters will make sure that a cluster contains just positive nodes
         // or just negative nodes.
         //
         findClusters();
         setClustersCenterOfGravityAndArea();
         break;
   }
   
   //
   // Nodes that are to remain after clustering
   //
   std::vector<bool> validClusterNodes(numNodes, false);
   
   std::vector<Cluster> clustersOut;
   
   const int numClusters = static_cast<int>(clusters.size());
   
   //
   // Determine which clusters are good
   //
   switch (algorithm) {
      case CLUSTER_ALGORITHM_NONE:
         break;
      case CLUSTER_ALGORITHM_ANY_SIZE:
         //
         // Any nodes within the thresholds are in the cluster
         //
         for (int i = 0; i < numNodes; i++) {
            validClusterNodes[i] = nodeWithinThresholds[i];
         }
         break;
      case CLUSTER_ALGORITHM_MINIMUM_NUMBER_OF_NODES:
         //
         // Keep nodes that are in clusters with sufficient number of nodes
         //
         for (int i = 0; i < numClusters; i++) {
            Cluster& c = clusters[i];
            const int numNodesInCluster = c.getNumberOfNodesInCluster();
            if (numNodesInCluster >= minimumNumberOfNodes) {
               for (int j = 0; j < numNodesInCluster; j++) {
                  validClusterNodes[c.nodeIndices[j]] = true;
               }
               
               clustersOut.push_back(c);
            }
            else {
               if (outputAllClustersFlag) {
                  clustersOut.push_back(c);
               }
            }
         }
         break;
      case CLUSTER_ALGORITHM_MINIMUM_SURFACE_AREA:
         //
         // Keep nodes that are in clusters with minimum area
         //
         for (int i = 0; i < numClusters; i++) {
            Cluster& c = clusters[i];
            if (c.getArea() >= minimumSurfaceArea) {
               const int numNodesInCluster = c.getNumberOfNodesInCluster();
               for (int j = 0; j < numNodesInCluster; j++) {
                  validClusterNodes[c.nodeIndices[j]] = true;
               }
               
               clustersOut.push_back(c);
            }
            else {
               if (outputAllClustersFlag) {
                  clustersOut.push_back(c);
               }
            }
         }
         break;
   }
   
   //
   // output the clusters
   //
   clusters = clustersOut;
   
   //
   // Any nodes within the thresholds are in the cluster
   //
   for (int i = 0; i < numNodes; i++) {
      if (validClusterNodes[i] == false) {
         metricFile->setValue(i, outputColumn, 0.0);
      }
   }
}

/**
 * Find the clusters
 */
void
BrainModelSurfaceMetricClustering::findClusters() throw (BrainModelAlgorithmException)
{
   clusters.clear();
   
   QTime timer;
   timer.start();
   
   //
   // Search positive values
   //
   const int numNodes = metricFile->getNumberOfNodes();
   for (int i = 0; i < numNodes; i++) {
      if (nodeWithinThresholds[i]) {
         float minVal = 0.0;
         float maxVal = 0.0;
         bool doIt = false;
         if ((metricFile->getValue(i, outputColumn) >= clusterPositiveMinimumThreshold) &&
             (metricFile->getValue(i, outputColumn) <= clusterPositiveMaximumThreshold)) { 
            minVal = clusterPositiveMinimumThreshold;
            maxVal = clusterPositiveMaximumThreshold;
            doIt = true;
         }
         else if ((metricFile->getValue(i, outputColumn) >= clusterNegativeMaximumThreshold) &&
                   (metricFile->getValue(i, outputColumn) <= clusterNegativeMinimumThreshold)) { 
            minVal = clusterNegativeMaximumThreshold;
            maxVal = clusterNegativeMinimumThreshold;
            doIt = true;
         }
         
         if (doIt) {
            //
            // allow other events to process
            //
            allowEventsToProcess();

            BrainModelSurfaceConnectedSearchMetric bmscsm(brainSet,
                                                      bms,
                                                      i,
                                                      metricFile,
                                                      outputColumn,
                                                      minVal,
                                                      maxVal,
                                                      &nodeWithinThresholds);
            try {
               bmscsm.execute();
            }
            catch (BrainModelAlgorithmException& e) {
               throw e;
            }
            
            //
            // Create a new cluster
            //
            Cluster c(minVal, maxVal);
            
            //
            // See which nodes should be added to the cluster
            //
            for (int j = i; j < numNodes; j++) {
               //
               // Is node part of the cluster ?
               //
               if (bmscsm.getNodeConnected(j)) {
                  //
                  // add to the cluster
                  //
                  c.addNodeToCluster(j);
                  
                  //
                  // do not need to look at this node again
                  //
                  nodeWithinThresholds[j] = false;
               }
            }
            
            //
            // If the cluster has nodes, add it to the clusters
            //
            if (c.getNumberOfNodesInCluster() > 0) {
               clusters.push_back(c);
               if (DebugControl::getDebugOn()) {
                  std::cout << "Cluster starting at node " << i
                            << " contains " << c.getNumberOfNodesInCluster()
                            << " nodes." << std::endl;
               }
            }
         }
         
         //
         // This node no longer needs to be examined
         //
         nodeWithinThresholds[i] = false;
      }
   }
   if (DebugControl::getDebugOn()) {
      std::cout << "Time to find clusters: " 
                << (static_cast<float>(timer.elapsed()) / 1000.0) << std::endl;
   }
}

/**
 * set clusters center of gravity and area.
 */
void 
BrainModelSurfaceMetricClustering::setClustersCenterOfGravityAndArea() throw (BrainModelAlgorithmException)
{
   const int numClusters = static_cast<int>(clusters.size());
   if (numClusters > 0) {
      //
      // Get the area of all nodes
      //
      std::vector<float> nodeAreas;
      bms->getAreaOfAllNodes(nodeAreas);
      const CoordinateFile* cf = bms->getCoordinateFile();
      //
      // process each cluster
      //
      for (int i = 0; i < numClusters; i++) {
         Cluster& c = clusters[i];
         const int numNodesInCluster = c.getNumberOfNodesInCluster();
         if (numNodesInCluster > 0) {
            double area = 0.0;
            double cogSum[3] = { 0.0, 0.0, 0.0 };
            for (int j = 0; j < numNodesInCluster; j++) {
               const int nodeNumber = c.nodeIndices[j];
               area += nodeAreas[nodeNumber];
               const float* xyz = cf->getCoordinate(nodeNumber);
               cogSum[0] += xyz[0];
               cogSum[1] += xyz[1];
               cogSum[2] += xyz[2];
            }
            
            //
            // Note: Area of nodes is just summed, no need to divide by zero
            //
            c.setArea(area);
            
            const float cog[3] = {
               cogSum[0] / static_cast<double>(numNodesInCluster),
               cogSum[1] / static_cast<double>(numNodesInCluster),
               cogSum[2] / static_cast<double>(numNodesInCluster)
            };
            c.setCenterOfGravity(cog);
         }
      }
   }
}
      
/**
 * get clusters indices sorted by number of nodes in cluster.
 */
void 
BrainModelSurfaceMetricClustering::getClusterIndicesSortedByNumberOfNodesInCluster(std::vector<int>& indices) const
{
   indices.clear();
   
   //
   // Sort the indices by number of nodes in clusters
   //
   ValueIndexSort vis;
   const int num = getNumberOfClusters();
   for (int i = 0; i < num; i++) {
      const Cluster* c = getCluster(i);
      vis.addValueIndexPair(i, c->getNumberOfNodesInCluster());
   }
   vis.sort();
   
   //
   // Set output indices
   //
   const int numItems = vis.getNumberOfItems();
   for (int i = 0; i < numItems; i++) {
      int indx;
      float value;
      vis.getValueAndIndex(i, indx, value);
      indices.push_back(indx);
   }
}

//*****************************************************************************************
//
// Cluster methods
//

/**
 * Constructor
 */
BrainModelSurfaceMetricClustering::Cluster::Cluster(const float threshMinIn, const float threshMaxIn) 
{ 
   clusterArea = 0.0; 
   centerOfGravity[0] = 0.0;
   centerOfGravity[1] = 0.0;
   centerOfGravity[2] = 0.0;
   threshMin = threshMinIn;
   threshMax = threshMaxIn;
}

/** 
 * get thresholds.
 */
void 
BrainModelSurfaceMetricClustering::Cluster::getThresholds(float& threshMinOut, 
                                                          float& threshMaxOut) const
{
   threshMinOut = threshMin;
   threshMaxOut = threshMax;
}
            
/**
 * get the center of gravity.
 */
void 
BrainModelSurfaceMetricClustering::Cluster::getCenterOfGravity(float cog[3]) const
{
   cog[0] = centerOfGravity[0];
   cog[1] = centerOfGravity[1];
   cog[2] = centerOfGravity[2];
}

/**
 * set the center of gravity.
 */
void 
BrainModelSurfaceMetricClustering::Cluster::setCenterOfGravity(const float cog[3])
{
   centerOfGravity[0] = cog[0];
   centerOfGravity[1] = cog[1];
   centerOfGravity[2] = cog[2];
}            

/**
 * get the maximum Y-Value.
 */
float 
BrainModelSurfaceMetricClustering::Cluster::getMaximumY(const BrainModelSurface* bms) const
{
   float maxY = 0.0;
   
   const int numClusterNodes = getNumberOfNodesInCluster();
   if (numClusterNodes > 0) {
      const CoordinateFile* cf = bms->getCoordinateFile();
   
      maxY = -std::numeric_limits<float>::max();
   
      for (int i = 0; i < numClusterNodes; i++) {
         const float* xyz = cf->getCoordinate(nodeIndices[i]);
         maxY = std::max(maxY, xyz[1]);
      }
   }
   
   return maxY;
}
            
/**
 * get the center of gravity using the surface (does not overwrite cluster's cog).
 */
void 
BrainModelSurfaceMetricClustering::Cluster::getCenterOfGravityForSurface(const BrainModelSurface* bms,
                                                                         float cog[3]) const
{
   double cogSum[3] = { 0.0, 0.0, 0.0 };
   
   const int numClusterNodes = getNumberOfNodesInCluster();
   if (numClusterNodes > 0) {
      const CoordinateFile* cf = bms->getCoordinateFile();
   
      for (int i = 0; i < numClusterNodes; i++) {
         const float* xyz = cf->getCoordinate(nodeIndices[i]);
         cogSum[0] += xyz[0];
         cogSum[1] += xyz[1];
         cogSum[2] += xyz[2];
      }
      
      cogSum[0] /= static_cast<double>(numClusterNodes);
      cogSum[1] /= static_cast<double>(numClusterNodes);
      cogSum[2] /= static_cast<double>(numClusterNodes);
   }

   cog[0] = cogSum[0];
   cog[1] = cogSum[1];
   cog[2] = cogSum[2];
}