File: BrainModelSurfaceROICreateBorderUsingMetricShape.cxx

package info (click to toggle)
caret 5.6.4~dfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 31,904 kB
  • ctags: 28,901
  • sloc: cpp: 378,050; python: 6,718; ansic: 5,507; makefile: 333; sh: 46
file content (518 lines) | stat: -rw-r--r-- 18,125 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*LICENSE_START*/
/*
 *  Copyright 1995-2002 Washington University School of Medicine
 *
 *  http://brainmap.wustl.edu
 *
 *  This file is part of CARET.
 *
 *  CARET is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  CARET is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with CARET; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */
/*LICENSE_END*/

#include <deque>
#include <iostream>
#include <limits>

#include "BrainModelSurface.h"
#include "BrainModelSurfaceROICreateBorderUsingMetricShape.h"
#include "BrainModelSurfaceROINodeSelection.h"
#include "BrainSet.h"
#include "CoordinateFile.h"
#include "DebugControl.h"
#include "FileUtilities.h"
#include "MathUtilities.h"
#include "MetricFile.h"
#include "TopologyFile.h"
#include "TopologyHelper.h"

/**
 * constructor.  It is best to use a "lightly folded" surface such as a 
 * very inflated surface or and ellipsoid surface.  When finding the path,
 * the distance from the next node to the end node must be less than the
 * distance from the current node to the end node.  When the surface is
 * highly folded, it may be necessary to move away from the end node 
 * which will cause the algorithm to fail.
 */
BrainModelSurfaceROICreateBorderUsingMetricShape::BrainModelSurfaceROICreateBorderUsingMetricShape(
                                              BrainSet* bs,
                                              const BrainModelSurface* bmsIn,
                                              const BrainModelSurfaceROINodeSelection* surfaceROIIn,
                                              const MODE modeIn,
                                              const MetricFile* metricFileIn,
                                              const int metricColumnNumberIn,
                                              const QString& borderNameIn,
                                              const int startNodeIn,
                                              const int endNodeIn,
                                              const float samplingDensityIn)
   : BrainModelSurfaceROIOperation(bs, bmsIn, surfaceROIIn),
     mode(modeIn),
     metricFile(metricFileIn),
     metricColumnNumber(metricColumnNumberIn),
     borderName(borderNameIn),
     borderStartNode(startNodeIn),
     borderEndNode(endNodeIn),
     borderSamplingDensity(samplingDensityIn)
{
}

/**
 * destructor.
 */
BrainModelSurfaceROICreateBorderUsingMetricShape::~BrainModelSurfaceROICreateBorderUsingMetricShape()
{
}

/**
 * execute the operation.
 */
void 
BrainModelSurfaceROICreateBorderUsingMetricShape::executeOperation() throw (BrainModelAlgorithmException)
{
   if (borderName.isEmpty()) {
      throw BrainModelAlgorithmException("Name for border is empty.");
   }

   BrainModelSurfaceROINodeSelection theROI(*operationSurfaceROI);
   const int numNodesInROI = theROI.getNumberOfNodesSelected();
   
   if (numNodesInROI == 1) {
      throw BrainModelAlgorithmException("There is only one node, the starting node, in the ROI "
                                         " for border named " + borderName);
   }
   
   const int numNodes = bms->getNumberOfNodes();
   const CoordinateFile* cf = bms->getCoordinateFile();
   
   border.clearLinks();
   
   //
   // Check Inputs
   //
   if (metricFile == NULL) {
      throw BrainModelAlgorithmException("Metric/Shape file is invalid for border named " + borderName);
   }
   if ((metricColumnNumber < 0) ||
       (metricColumnNumber >= metricFile->getNumberOfColumns())) {
       throw BrainModelAlgorithmException("Metric/Shape file column number is invalid for border named " + borderName);
   }
   if ((borderStartNode < 0) ||
       (borderStartNode >= numNodes)) {
         throw BrainModelAlgorithmException("Starting node is invalid for border named " + borderName);
   }
   if ((borderEndNode < 0) ||
       (borderEndNode >= numNodes)) {
         throw BrainModelAlgorithmException("Ending node is invalid for border named " + borderName);
   }
   if (borderStartNode == borderEndNode) {
      throw BrainModelAlgorithmException("Starting and ending node are the same for border named " + borderName);
   }
   if (theROI.getNodeSelected(borderStartNode) == false) {
      throw BrainModelAlgorithmException("Starting node is not in the ROI for border named " + borderName);
   }
   if (theROI.getNodeSelected(borderEndNode) == false) {
      throw BrainModelAlgorithmException("Ending node is not in the ROI for border named " + borderName);
   }
   
   
   //
   // Get a topology helper
   //
   const TopologyFile* tf = bms->getTopologyFile();
   const TopologyHelper* th = tf->getTopologyHelper(false, true, false);
   
   //
   // Use a deque (double ended queue) for tracking nodes in path 
   //
   std::deque<int> borderPathNodes;
   borderPathNodes.push_back(borderStartNode);

   //
   // Keep track of nodes added to ROI (used for fast indexing)
   //
   std::vector<int> nodeVisitedFlags(numNodes, 0);
   nodeVisitedFlags[borderStartNode] = 1;
   
   //
   // Coordinate of ending node
   //
   const float* endXYZ = cf->getCoordinate(borderEndNode);
   
   //
   // Loop until path from starting to ending nodes is found
   //
   int currentNode = borderStartNode;
   int lastDilatedNode = -1;
   bool done = false;
   while (done == false) {
      //
      // Get neighbors of current node
      //
      int numNeighbors = 0;
      const int* neighbors = th->getNodeNeighbors(currentNode, numNeighbors);
      
      //
      // see if any neighbor is the ending node
      //
      for (int i = 0; i < numNeighbors; i++) {
         if (neighbors[i] == borderEndNode) {
            borderPathNodes.push_back(borderEndNode);
            done = true;
            break;
         }
      }
      
      //
      // Need to search neighbors
      //
      if (done == false) {
         //
         // Find distance from current node to ending node
         //
         const float currentNodeDistanceToEndingNode = 
            MathUtilities::distanceSquared3D(cf->getCoordinate(currentNode), endXYZ);
            
         //
         // Next node for border
         //
         int nextNode = -1;
         float nextNodeMetricValue = 0.0;
         switch (mode) {
            case MODE_FOLLOW_MOST_NEGATIVE:
               nextNodeMetricValue = std::numeric_limits<float>::max();
               break;
            case MODE_FOLLOW_MOST_POSITIVE:
               nextNodeMetricValue = -std::numeric_limits<float>::max();
               break;
         }
         
         //
         // Loop through neighbors
         //
         for (int i = 0; i < numNeighbors; i++) {
            const int neighborNode = neighbors[i];
            
            //
            // Is node in the ROI
            //
            if (theROI.getNodeSelected(neighborNode) &&
                (nodeVisitedFlags[neighborNode] == 0)) {
               //
               // Is distance from neighbor to end node closer than distance
               // form current node to end node
               //
               const float distance = 
                  MathUtilities::distanceSquared3D(cf->getCoordinate(neighborNode), endXYZ);
               if (distance < currentNodeDistanceToEndingNode) {
                  //
                  // Is metric value the most positive or negative
                  //
                  const float metricValue = metricFile->getValue(neighborNode,
                                                                 metricColumnNumber);
                  if (nextNode < 0) {
                     nextNode = neighborNode;
                     nextNodeMetricValue = metricValue;
                  }
                  else {
                     switch (mode) {
                        case MODE_FOLLOW_MOST_NEGATIVE:
                           if (metricValue < nextNodeMetricValue) {
                              nextNode = neighborNode;
                              nextNodeMetricValue = metricValue;
                           }
                           break;
                        case MODE_FOLLOW_MOST_POSITIVE:
                           if (metricValue > nextNodeMetricValue) {
                              nextNode = neighborNode;
                              nextNodeMetricValue = metricValue;
                           }
                           break;
                     }
                  }
               } // if
            }
         } // for
         
         //
         // If no neighbor in ROI is closer to end node than current node
         //
         if (nextNode < 0) {
            //
            // Move to neighbor that is closest to end node even if that
            // means moving away from the end
            //
            float nearestDistance = std::numeric_limits<float>::max();
            for (int i = 0; i < numNeighbors; i++) {
               const int neighborNode = neighbors[i];
               
               //
               // Is node in the ROI
               //
               if (theROI.getNodeSelected(neighborNode) &&
                   (nodeVisitedFlags[neighborNode] == 0)) {
                  //
                  // Is distance from neighbor than other neighbors
                  //
                  const float distance = 
                     MathUtilities::distanceSquared3D(cf->getCoordinate(neighborNode), endXYZ);
                  if (distance < nearestDistance) {
                     nearestDistance = distance;
                     nextNode = neighborNode;
                  }
               }
            }
         }
         
         if (nextNode >= 0) {
            currentNode = nextNode;
            borderPathNodes.push_back(currentNode);
            lastDilatedNode = -1;
            nodeVisitedFlags[currentNode] = 1;
         }
/*
         else if (borderPathNodes.size() > 1) {
            //
            // Since cannot move closer to end, back up one node 
            // and remove current node from ROI
            //
            theROI.setNodeSelected(currentNode, false);
            if (currentNode != borderPathNodes.back()) {
               std::cout << "ERROR back() is not current node." << std::endl;
            }
            borderPathNodes.pop_back();
            currentNode = borderPathNodes.back();
         }
*/
         else if (currentNode != lastDilatedNode) {
            //
            // Put neighbors in ROI and try again
            //
            theROI.dilateAroundNode(bms, currentNode);
            lastDilatedNode = currentNode;
         }
         else {
            throw BrainModelAlgorithmException(
               "Create Metric/Shape Border: unable to complete path from node "
               + QString::number(borderStartNode)
               + " to node "
               + QString::number(borderEndNode)
               + ".  Stuck at node "
               + QString::number(currentNode)
               + " for border named " + borderName);
         }
      }
   }
   
   //
   // Name and add nodes to the border
   //
   border.clearLinks();
   const int numNodesInPath = static_cast<int>(borderPathNodes.size());
   for (int j = 0; j < numNodesInPath; j++) {
      border.addBorderLink(cf->getCoordinate(borderPathNodes[j]));
   }
   border.setName(borderName);
}

/* 18apr2008
void 
BrainModelSurfaceROICreateBorderUsingMetricShape::executeOperation() throw (BrainModelAlgorithmException)
{
   if (borderName.isEmpty()) {
      throw BrainModelAlgorithmException("Name for border is empty.");
   }

   const int numNodesInROI = theROI->getNumberOfNodesSelected();
   
   if (numNodesInROI == 1) {
      throw BrainModelAlgorithmException("There is only one node, the starting node, in the ROI "
                                         " for border named " + borderName);
   }
   
   const int numNodes = bms->getNumberOfNodes();
   const CoordinateFile* cf = bms->getCoordinateFile();
   
   border.clearLinks();
   
   //
   // Check Inputs
   //
   if (metricFile == NULL) {
      throw BrainModelAlgorithmException("Metric/Shape file is invalid for border named " + borderName);
   }
   if ((metricColumnNumber < 0) ||
       (metricColumnNumber >= metricFile->getNumberOfColumns())) {
       throw BrainModelAlgorithmException("Metric/Shape file column number is invalid for border named " + borderName);
   }
   if ((borderStartNode < 0) ||
       (borderStartNode >= numNodes)) {
         throw BrainModelAlgorithmException("Starting node is invalid for border named " + borderName);
   }
   if ((borderEndNode < 0) ||
       (borderEndNode >= numNodes)) {
         throw BrainModelAlgorithmException("Ending node is invalid for border named " + borderName);
   }
   if (borderStartNode == borderEndNode) {
      throw BrainModelAlgorithmException("Starting and ending node are the same for border named " + borderName);
   }
   if (operationSurfaceROI->getNodeSelected(borderStartNode) == false) {
      throw BrainModelAlgorithmException("Starting node is not in the ROI for border named " + borderName);
   }
   if (operationSurfaceROI->getNodeSelected(borderEndNode) == false) {
      throw BrainModelAlgorithmException("Ending node is not in the ROI for border named " + borderName);
   }
   
   //
   // Get a topology helper
   //
   const TopologyFile* tf = bms->getTopologyFile();
   const TopologyHelper* th = tf->getTopologyHelper(false, true, false);
   
   //
   // Beginning of border
   //
   border.addBorderLink(cf->getCoordinate(borderStartNode));
   
   //
   // Coordinate of ending node
   //
   const float* endXYZ = cf->getCoordinate(borderEndNode);
   
   //
   // Loop until path from starting to ending nodes is found
   //
   int currentNode = borderStartNode;
   bool done = false;
   while (done == false) {
      //
      // Get neighbors of current node
      //
      int numNeighbors = 0;
      const int* neighbors = th->getNodeNeighbors(currentNode, numNeighbors);
      
      //
      // see if any neighbors is the ending node
      //
      for (int i = 0; i < numNeighbors; i++) {
         if (neighbors[i] == borderEndNode) {
            border.addBorderLink(endXYZ);
            done = true;
            break;
         }
      }
      
      //
      // Need to search neighbors
      //
      if (done == false) {
         //
         // Find distance from current node to ending node
         //
         const float currentNodeDistanceToEndingNode = 
            MathUtilities::distanceSquared3D(cf->getCoordinate(currentNode), endXYZ);
            
         //
         // Next node for border
         //
         int nextNode = -1;
         float nextNodeMetricValue = 0.0;
         switch (mode) {
            case MODE_FOLLOW_MOST_NEGATIVE:
               nextNodeMetricValue = std::numeric_limits<float>::max();
               break;
            case MODE_FOLLOW_MOST_POSITIVE:
               nextNodeMetricValue = -std::numeric_limits<float>::max();
               break;
         }
         
         //
         // Loop through neighbors
         //
         for (int i = 0; i < numNeighbors; i++) {
            const int neighborNode = neighbors[i];
            
            //
            // Is node in the ROI
            //
            if (operationSurfaceROI->getNodeSelected(neighborNode)) {
               //
               // Is distance from neighbor to end node closer than distance
               // form current node to end node
               //
               const float distance = 
                  MathUtilities::distanceSquared3D(cf->getCoordinate(neighborNode), endXYZ);
               if (distance < currentNodeDistanceToEndingNode) {
                  //
                  // Is metric value the most positive or negative
                  //
                  const float metricValue = metricFile->getValue(neighborNode,
                                                                 metricColumnNumber);
                  if (nextNode < 0) {
                     nextNode = neighborNode;
                     nextNodeMetricValue = metricValue;
                  }
                  else {
                     switch (mode) {
                        case MODE_FOLLOW_MOST_NEGATIVE:
                           if (metricValue < nextNodeMetricValue) {
                              nextNode = neighborNode;
                              nextNodeMetricValue = metricValue;
                           }
                           break;
                        case MODE_FOLLOW_MOST_POSITIVE:
                           if (metricValue > nextNodeMetricValue) {
                              nextNode = neighborNode;
                              nextNodeMetricValue = metricValue;
                           }
                           break;
                     }
                  }
               } // if
            }
         } // for
         
         if (nextNode >= 0) {
            border.addBorderLink(cf->getCoordinate(nextNode));
            currentNode = nextNode;
         }
         else {
            throw BrainModelAlgorithmException(
               "Create Border: unable to complete path from node "
               + QString::number(borderStartNode)
               + " to node "
               + QString::number(borderEndNode)
               + ".  Stuck at node "
               + QString::number(currentNode)
               + " for border named " + borderName);
         }
      }
   }
   
   //
   // Name the border
   //
   border.setName(borderName);
}
*/

/**
 * get the border that was created by create border mode.
 */
Border 
BrainModelSurfaceROICreateBorderUsingMetricShape::getBorder() const
{
   return border;
}