1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
|
//# MSMetaData.h
//# Copyright (C) 1998,1999,2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
#ifndef MS_MSMETADATA_H
#define MS_MSMETADATA_H
#include <casacore/casa/aips.h>
#include <casacore/casa/Quanta/QVector.h>
#include <casacore/measures/Measures/MFrequency.h>
#include <casacore/measures/Measures/MPosition.h>
#include <casacore/ms/MeasurementSets/MeasurementSet.h>
#include <casacore/ms/MeasurementSets/MSPointingColumns.h>
#include <casacore/tables/Tables/TableProxy.h>
#include <map>
#include <memory>
namespace casacore {
template <class T> class ArrayColumn;
struct ArrayKey;
struct ScanKey;
struct SourceKey;
struct SubScanKey;
// <summary>
// Class to interrogate an MS for metadata. Interrogation happens on demand
// and resulting metadata are stored for use by subsequent queries if the
// cache has not exceeded the specified limit. Caching of MS main table columns
// has been removed because the cache can be swamped by columns for large
// MSes, meaning that smaller data structures, which are more computationally
// expensive to create, aren't cached. Also, the column data is usually only
// needed temporarily to compute smaller data structures, and the column data
// is not particularly expensive to recreate if necessary.
// Parallel processing is enabled using openmp.
// </summary>
class MSMetaData {
public:
// for retrieving stats
enum CorrelationType {
AUTO,
CROSS,
BOTH
};
enum SQLDSwitch {
SQLD_INCLUDE,
SQLD_EXCLUDE,
SQLD_ONLY
};
struct TimeStampProperties {
std::set<Int> ddIDs;
rownr_t nrows;
};
struct ColumnStats {
Double max;
Double median;
Double min;
};
typedef std::map<Int, std::pair<Double, Quantity> > FirstExposureTimeMap;
struct SubScanProperties {
// number of auto-correlation rows
rownr_t acRows;
// number of cross-correlation rows.
rownr_t xcRows;
std::set<Int> antennas;
Double beginTime;
std::set<uInt> ddIDs;
Double endTime;
// the key is the spwID, the value is the meanInterval for
// the subscan and that spwID
std::map<uInt, Quantity> meanInterval;
// The Int represents the data description ID,
// The Double represents the time of the first time stamp,
// The Quantity represents the exposure time for the corresponding
// data description ID and time stamp
FirstExposureTimeMap firstExposureTime;
Quantity meanExposureTime;
std::set<uInt> spws;
// number of rows for each spectral window
std::map<uInt, rownr_t> spwNRows;
std::set<Int> stateIDs;
std::map<Double, TimeStampProperties> timeProps;
};
// construct an object which stores a pointer to the MS and queries the MS
// only as necessary. The MeasurementSet pointer passed in should not go out
// of scope in the calling code until the caller has finished with this object,
// or else subsequent method calls on this object will result in a segmentation
// fault; the pointer is not copied.
// <src>maxCacheSizeMB</src> is the maximum cache size in megabytes. <=0 means
// do not use a cache, in which case, each method call will have to (re)query
// the MS. It is highly recommended to use a cache of reasonable size for the
// specified MS if multiple methods are going to be called.
MSMetaData(const MeasurementSet *const &ms, const Float maxCacheSizeMB);
virtual ~MSMetaData();
// get the antenna diameters
QVD getAntennaDiameters() const;
// if the antenna name appears multiple times in the antenna table, the *last* ID
// that it is associated with is returned.
uInt getAntennaID(const String& antennaName) const;
// get all the antenna IDs for the antenna with the specified name.
std::set<uInt> getAntennaIDs(const String& antennaName) const;
// The returned IDs are ordered in the way they appear in the atenna table
vector<std::set<uInt> > getAntennaIDs(const vector<String>& antennaNames) const;
// In the first instance of getAntennaNames, namesToID map will have the *last* ID
// of the antenna name, if it appears multiple times in the antenna table. In the second
// occurrence, namesToIDsMap will have the full set of IDs for antenna names that appear
// multiple times.
vector<String> getAntennaNames(
std::map<String, uInt>& namesToIDsMap,
const vector<uInt>& antennaIDs=vector<uInt>(0)
) const;
vector<String> getAntennaNames(
std::map<String, std::set<uInt> >& namesToIDsMap,
const vector<uInt>& antennaIDs=vector<uInt>(0)
) const;
// get the antenna stations for the specified antenna IDs
vector<String> getAntennaStations(const vector<uInt>& antennaIDs=vector<uInt>());
// get the antenna stations for the specified antenna names. The outer vector is ordered
// respective to antennaNames. Because an antenna name can appear more than once in
// the antenna table, the inner vector is ordered by row number in which that antenna name
// appears.
vector<std::vector<String> > getAntennaStations(const vector<String>& antennaNames);
// get the set of antenna IDs for the specified scan.
std::set<Int> getAntennasForScan(const ScanKey& scan) const;
// POLARIZATION.CORR_PRODUCT
vector<Array<Int> > getCorrProducts() const;
// POLARIZATION.CORR_TYPE
vector<vector<Int> > getCorrTypes() const;
vector<uInt> getDataDescIDToSpwMap() const;
vector<uInt> getDataDescIDToPolIDMap() const;
// Get the FIELD.SOURCE_ID column.
vector<Int> getFieldTableSourceIDs() const;
// get the mapping of field ID to scans
vector<std::set<ScanKey> > getFieldToScansMap() const;
std::map<String, std::set<Int> > getIntentToFieldsMap();
std::map<String, std::set<ScanKey> > getIntentToScansMap();
std::map<String, std::set<uInt> > getIntentToSpwsMap();
std::set<String> getIntentsForScan(const ScanKey& scan) const;
std::set<String> getIntentsForSubScan(const SubScanKey& subScan) const;
std::shared_ptr<const std::map<SubScanKey, std::set<String> > > getSubScanToIntentsMap() const;
// get all intents, in no particular (nor guaranteed) order.
std::set<String> getIntents() const;
// get a set of intents corresponding to a specified field
std::set<String> getIntentsForField(Int fieldID);
// get a set of intents corresponding to a specified field name
std::set<String> getIntentsForField(String field);
// get a set of intents corresponding to the specified spectral window
std::set<String> getIntentsForSpw(const uInt spw);
// number of correlations from the polarization table.
vector<Int> getNumCorrs() const;
//SOURCE.PROPER_MOTION, first value in pair is longitudinal proper motion,
// second is latiduninal
vector<std::pair<Quantity, Quantity> > getProperMotions() const;
// get unique scan numbers
std::set<Int> getScanNumbers(Int obsID, Int arrayID) const;
// get a set of scan numbers for the specified stateID, obsID, and arrayID.
// If obsID and/or arrayID is negative, all observation IDs and/or array IDs
// will be used.
std::set<Int> getScansForState(
Int stateID, Int obsID, Int arrayID
) const;
// get the mapping of scans to states
std::map<ScanKey, std::set<Int> > getScanToStatesMap() const;
// SOURCE.DIRECTION
vector<MDirection> getSourceDirections() const;
// SOURCE.NAME
vector<String> getSourceNames() const;
// Get the SOURCE.SOURCE_ID column. This is a very unfortunate column name,
// because generally an "ID" column of the table with the same name refers to
// the row number in that table. But not in this case.
vector<Int> getSourceTableSourceIDs() const;
// SOURCE.TIME
std::shared_ptr<const Quantum<Vector<Double> > > getSourceTimes() const;
// get a set of spectral windows for which the specified <src>intent</src>
// applies.
virtual std::set<uInt> getSpwsForIntent(const String& intent);
// get the number of visibilities
rownr_t nRows() const;
rownr_t nRows(CorrelationType cType);
std::shared_ptr<const std::map<SubScanKey, rownr_t> > getNRowMap(CorrelationType type) const;
rownr_t nRows(
CorrelationType cType, Int arrayID, Int observationID,
Int scanNumber, Int fieldID
) const;
rownr_t nRows(CorrelationType cType, uInt fieldID) const;
// get number of spectral windows
uInt nSpw(Bool includewvr) const;
// number of unique states (number of rows from the STATE table)
uInt nStates() const;
// get the number of fields.
uInt nFields() const;
// get a mapping of spectral window ID to data descrption IDs
std::vector<std::set<uInt> > getSpwToDataDescriptionIDMap() const;
// get a set of spectral windows corresponding to the specified fieldID
std::set<uInt> getSpwsForField(const Int fieldID) const;
// get a set of spectral windows corresponding to the specified field name
std::set<uInt> getSpwsForField(const String& fieldName);
// get the values of the CODE column from the field table
vector<String> getFieldCodes() const;
// get the set of field IDs corresponding to the specified spectral window.
std::set<Int> getFieldIDsForSpw(const uInt spw);
// get the set of field names corresponding to the specified spectral window.
std::set<String> getFieldNamesForSpw(const uInt spw);
// get the mapping of fields to spws
std::map<Int, std::set<uInt> > getFieldsToSpwsMap() const;
// get rest frequencies from the SOURCE table
std::map<SourceKey, std::shared_ptr<vector<MFrequency> > > getRestFrequencies() const;
// get the set of spectral windows for the specified scan.
std::set<uInt> getSpwsForScan(const ScanKey& scan) const;
// get the set of spectral windows for the specified subscan.
std::set<uInt> getSpwsForSubScan(const SubScanKey& subScan) const;
// get the set of scan numbers for the specified spectral window.
std::set<Int> getScansForSpw(uInt spw, Int obsID, Int arrayID) const;
// get the complete mapping of scans to spws
std::map<ScanKey, std::set<uInt> > getScanToSpwsMap() const;
// get the complete mapping of spws to scans
std::vector<std::set<ScanKey> > getSpwToScansMap() const;
// get the transitions from the SOURCE table. If there are no transitions
// for a particular key, the shared ptr contains the null ptr.
std::map<SourceKey, std::shared_ptr<vector<String> > > getTransitions() const;
// get the number of antennas in the ANTENNA table
uInt nAntennas() const;
// ALMA-specific. get set of spectral windows used for TDM. These are windows that have
// 64, 128, or 256 channels
std::set<uInt> getTDMSpw();
// ALMA-specific. get set of spectral windows used for FDM. These are windows that do not
// have 1, 4, 64, 128, or 256 channels.
std::set<uInt> getFDMSpw();
// ALMA-specific. get spectral windows that have been averaged. These are windows with 1 channel.
std::set<uInt> getChannelAvgSpw();
// ALMA-specific. Get the spectral window set used for WVR measurements. These have 4 channels each.
std::set<uInt> getWVRSpw() const;
// ALMA-specific. Get the square law detector (total power) spectral windows.
std::set<uInt> getSQLDSpw();
// Get the scan numbers which fail into the specified time range (center-tol to center+tol),
// inclusive. A negative value of obsID and/or arrayID indicates that all observation IDs
// and/or all arrayIDs should be used.
std::set<Int> getScansForTimes(
Double center, Double tol, Int obsID, Int arrayID
) const;
// Get the times for the specified scans
std::set<Double> getTimesForScans(std::set<ScanKey> scans) const;
// get the times for the specified scan.
// The return values come from the TIME column.
std::set<Double> getTimesForScan(const ScanKey& scan) const;
std::map<uInt, std::set<Double> > getSpwToTimesForScan(const ScanKey& scan) const;
// get the time range for the specified scan. The pair will contain
// the start and stop time of the scan, determined from min(TIME(x)-0.5*INTERVAL(x)) and
// max(TIME(x)-0.5*INTERVAL(x))
std::pair<Double, Double> getTimeRangeForScan(const ScanKey& scanKey) const;
// get the map of scans to time ranges.
std::shared_ptr<const std::map<ScanKey, std::pair<Double,Double> > > getScanToTimeRangeMap() const;
// get the stateIDs associated with the specified scan. If obsID and/or arrayID
// is negative, all observation IDs and/or array IDs will be used.
std::set<Int> getStatesForScan(Int obsID, Int arrayID, Int scan) const;
// get a map of spectral windows to unique timestamps.
std::vector<std::set<Double> > getTimesForSpws(Bool showProgress=True) const;
// get the position of the specified antenna relative to the observatory position.
// the three vector returned represents the longitudinal, latitudinal, and elevation
// offsets (elements 0, 1, and 2 respectively). The longitude and latitude offsets are
// measured along the surface of a sphere centered at the earth's center and whose surface
// intersects the position of the observatory.
QVD getAntennaOffset(uInt which) const;
// If the antenna name appears mulitple times, this will return the offset for the first
// occurrence of it in the antenna table
QVD getAntennaOffset(const String& name) const;
// If the antenna name appears mulitple times, this will return all the offsets for it,
// in the order they appear in the antenna table
std::vector<QVD> getAntennaOffsets(const String& name) const;
vector<QVD > getAntennaOffsets() const;
// get the positions of the specified antennas. If <src>which</src> is empty, return
// all antenna positions.
vector<MPosition> getAntennaPositions(
const vector<uInt>& which=std::vector<uInt>(0)
) const;
// <src>names</src> cannot be empty.
vector<vector<MPosition> > getAntennaPositions(const vector<String>& names);
// the first key in the returned map is the spectral window ID, the second is
// the average interval for the specified scan for that spw.
std::map<uInt, Double> getAverageIntervalsForScan(const ScanKey& scan) const;
// the first key in the returned map is the spectral window ID, the second is
// the average interval for the specified sub scan for that spw.
std::map<uInt, Quantity> getAverageIntervalsForSubScan(const SubScanKey& subScan) const;
vector<uInt> getBBCNos() const;
vector<String> getCorrBits() const;
std::map<uInt, std::set<uInt> > getBBCNosToSpwMap(SQLDSwitch sqldSwitch);
vector<vector<Double> > getEdgeChans();
//Get the phase direction for a given field id and epoch
//interpolate polynomial if it is the field id is such or use ephemerides table
//if that is attached to that field id
MDirection phaseDirFromFieldIDAndTime(const uInt fieldID,
const MEpoch& ep=MEpoch(Quantity(0.0, Unit("s")))) const ;
// Get the reference direction for a given field ID and epoch interpolate
// polynomial if it is the field ID is such or use ephemerides table
// if that is attached to that field ID
MDirection getReferenceDirection(
const uInt fieldID,
const MEpoch& ep=MEpoch(Quantity(0.0, Unit("s")))
) const;
// get the field IDs for the specified field name. Case insensitive.
std::set<Int> getFieldIDsForField(const String& field) const;
// get a list of the field names in the order in which they appear in the
// FIELD table.
vector<String> getFieldNames() const;
// get field IDs associated with the specified scan number.
std::set<Int> getFieldsForScan(const ScanKey& scan) const;
// get the field IDs associated with the specified scans
std::set<Int> getFieldsForScans(
const std::set<Int>& scans, Int obsID, Int arrayID
) const;
// get the field IDs associated with the specified scans
std::set<Int> getFieldsForScans(const std::set<ScanKey>& scans) const;
// get the field IDs associated with the specified intent.
std::set<Int> getFieldsForIntent(const String& intent);
// get the field IDs associated with the specified source.
std::set<Int> getFieldsForIntent(uInt sourceID) const;
std::map<Int, std::set<Int> > getFieldsForSourceMap() const;
std::map<Int, std::set<String> > getFieldNamesForSourceMap() const;
// get the field names associated with the specified field IDs. If <src>fieldIDs</src>
// is empty, a vector of all the field names is returned.
vector<String> getFieldNamesForFieldIDs(const vector<uInt>& fieldIDs);
// Get the fields which fail into the specified time range (center-tol to center+tol)
std::set<Int> getFieldsForTimes(Double center, Double tol);
// max cache size in MB
Float getMaxCacheSizeMB() const { return _maxCacheMB; }
// get telescope names in the order they are listed in the OBSERVATION table. These are
// the telescopes (observatories), not the antenna names.
vector<String> getObservatoryNames();
// get the position of the specified telescope (observatory).
MPosition getObservatoryPosition(uInt which) const;
// get the phase directions from the FIELD subtable. The <src>ep</src> parameter
// specifies for which epoch to return the directions of any ephemeris objects
// in the data set. It is ignored for non-ephemeris objects.
vector<MDirection> getPhaseDirs(const MEpoch& ep=MEpoch(Quantity(0.0, Unit("s")))) const;
// get all ScanKeys in the dataset
std::set<ScanKey> getScanKeys() const;
// get all ScanKeys in the dataset that have the specified <src>arrayKey</src>.
// If negative values for either the obsID and/or arrayID portions of the ArrayKey
// indicate that all obsIDs and/or arrayIDs should be used.
std::set<ScanKey> getScanKeys(const ArrayKey& arrayKey) const;
// get the scans associated with the specified intent
std::set<Int> getScansForIntent(
const String& intent, Int obsID, Int arrayID
) const;
// get the scan numbers associated with the specified field ID.
std::set<Int> getScansForFieldID(Int fieldID, Int obsID, Int arrayID) const;
// get the scan numbers associated with the specified field. Subclasses should not implement or override.
std::set<Int> getScansForField(const String& field, Int obsID, Int arrayID) const;
// The first value of the pair is spw, the second is polarization ID.
std::map<std::pair<uInt, uInt>, uInt> getSpwIDPolIDToDataDescIDMap() const;
// get a map of the spwIDs to spw names from the spw table
vector<String> getSpwNames() const;
// get all the spws associated with the data description IDs listed in the main table.
// This will not correspond to a list of the row numbers in the SPECTRAL_WINDOW table
// if there are data description IDs that are not in the main table.
std::set<uInt> getSpwIDs() const;
// get all sub scan keys for the specified array key.
std::set<SubScanKey> getSubScanKeys(const ArrayKey& arrayKey) const;
// get the sub scan properties for the specified sub scan.
SubScanProperties getSubScanProperties(
const SubScanKey& subScan, Bool showProgress=False
) const;
std::shared_ptr<const std::map<SubScanKey, SubScanProperties> > getSubScanProperties(
Bool showProgress=False
) const;
// If True, force the subscan properties structure to be
// cached regardless of the stipulations on the maximum cache. Normally,
// the subscan properties structure is small compared to the size of any
// one column that is necessary to create it, and since creating this
// structure can be very expensive, especially for large datasets, it
// is often a good idea to cache it if it will be accessed many times.
void setForceSubScanPropsToCache(Bool b) { _forceSubScanPropsToCache = b; }
// get a data structure, consumable by users, representing a summary of the dataset
Record getSummary() const;
// get the times for which the specified field was observed
std::set<Double> getTimesForField(Int fieldID);
// get the time stamps associated with the specified intent
std::set<Double> getTimesForIntent(const String& intent) const;
Bool hasBBCNo() const;
//std::map<Double, Double> getExposuresForTimes() const;
// get the unique baselines in the MS. These are not necessarily every combination of the
// n(n-1)/2 possible antenna pairs, but rather the number of unique baselines represented in
// the main MS table, which in theory can be less than n(n-1)/2 (for example if samples for
// certain antenna pairs are not recorded. The returned Matrix is nAnts x nAnts in size. Pairs
// that are true represent baselines represented in the main MS table.
Matrix<Bool> getUniqueBaselines();
// get the number of unique baselines represented in the main MS table which in theory can be
// less than n*(n-1)/2. If <src>includeAutoCorrelation</src> is True, include autocorrelation
// "baselines" in the enumeration.
virtual uInt nBaselines(Bool includeAutoCorrelation=False);
// get the effective total exposure time. This is the effective time spent collecting unflagged data.
Quantity getEffectiveTotalExposureTime();
// get the number of scans in the dataset
uInt nScans();
// get the number of observations (from the OBSERVATIONS table) in the dataset
uInt nObservations() const;
// get the contents of the OBSERVER column from the OBSERVATIONS table
vector<String> getObservers() const;
// get the contents of the PROJECT column from the OBSERVATIONS table
vector<String> getProjects() const;
// get the contents of the SCHEDULE column from the OBSERVATIONS table
// Note that the embedded vectors may have different lengths
vector<vector<String> > getSchedules() const;
// get the time ranges from the OBSERVATION table
vector<std::pair<MEpoch, MEpoch> > getTimeRangesOfObservations() const;
// get the number of arrays (from the ARRAY table) in the dataset
uInt nArrays();
// get the number of data description IDs (from the DATA_DESCRIPTION table)
uInt nDataDescriptions() const;
// get the number of unflagged rows
Double nUnflaggedRows() const;
Double nUnflaggedRows(CorrelationType cType) const;
Double nUnflaggedRows(
CorrelationType cType, Int arrayID, uInt observationID,
Int scanNumber, uInt fieldID
) const;
Double nUnflaggedRows(CorrelationType cType, Int fieldID) const;
inline Float getCache() const { return _cacheMB;}
vector<Double> getBandWidths() const;
vector<Quantity> getCenterFreqs() const;
// get the effective bandwidth for each channel. Each element in
// the returned vector represents a separate spectral window, with
// ID given by its location in the vector. If asVelWidths is True,
// convert the values to velocity widths.
vector<QVD> getChanEffectiveBWs(Bool asVelWidths) const;
vector<QVD > getChanFreqs() const;
// get the resolution for each channel. Each element in
// the returned vector represents a separate spectral window, with
// ID given by its location in the vector. If asVelWidths is True,
// convert the values to velocity widths.
vector<QVD> getChanResolutions(Bool asVelWidths) const;
vector<QVD > getChanWidths() const;
vector<Quantity> getMeanFreqs() const;
vector<Int> getNetSidebands() const;
vector<MFrequency> getRefFreqs() const;
vector<uInt> nChans() const;
uInt nPol();
// DEPRECATED
// get a map of data desc ID, scan number pair to exposure time for the first time
// for that data desc ID, scan number pair
std::vector<std::map<Int, Quantity> > getFirstExposureTimeMap();
// get map of scans to first exposure times
std::map<ScanKey, FirstExposureTimeMap> getScanToFirstExposureTimeMap(Bool showProgress) const;
// get polarization IDs for the specified scan and spwid
std::set<uInt> getPolarizationIDs(uInt obsID, Int arrayID, Int scan, uInt spwid) const;
// get the unique antennas (the union of the ANTENNA_1 and ANTENNA_2 columns) from
// the main table
const std::set<Int>& getUniqueAntennaIDs() const;
// get unique data description IDs that exist in the main table
std::set<uInt> getUniqueDataDescIDs() const;
// DEPRECATED because of spelling error. Use getUniqueFieldIDs()
// instead.
inline std::set<Int> getUniqueFiedIDs() const {
return getUniqueFieldIDs();
}
// get unique field IDs that exist in the main table.
std::set<Int> getUniqueFieldIDs() const;
// get the pointing directions associated with antenna1 and antenna2 for
// the specified row of the main MS table
std::pair<MDirection, MDirection> getPointingDirection(
Int& ant1, Int& ant2, Double& time, rownr_t row,
Bool interpolate=false, Int initialguess=0
) const;
// get the time range for the entire dataset. min(TIME(x) - 0.5*INTERVAL(x)) to
// max(TIME(x) + 0.5*INTERVAL(x))
std::pair<Double, Double> getTimeRange(Bool showProgress=False) const;
// Number of unique values from SOURCE.SOURCE_ID
uInt nUniqueSourceIDsFromSourceTable() const;
// get the unique spectral window IDs represented by the data description
// IDs that appear in the main table
std::set<uInt> getUniqueSpwIDs() const;
const MeasurementSet* getMS() const { return _ms; }
void setShowProgress(Bool b) { _showProgress = b; }
// get statistics related to the values of the INTERVAL column. Returned
// values are in seconds. All values in this column are used in the computation,
// including those which associated row flags may be set.
ColumnStats getIntervalStatistics() const;
// ALMA specific CAS-13973 get receiver bands for each spw
// values of -1 indicate no info found for those spws.
vector<int> getSpwReceiverBands() const;
// ALMA specific CAS-13973 get subwindows for each spw
// values of -1 indicate no info found for those spws.
// The SPW subwindow name is established by the ALMA Observing
// Tool and is recorded in each project's scheduling blocks.
// Here is an example for one spw whose subwindow name is
// "SW-1", as indicated by the name field. Currently, these
// values can range up to "SW-4", as a maximumn of 4 spws per
// baseband are currently offered on the ALMA correlators.
//
// <sbl:ACASpectralWindow sideBand="LSB"
// windowFunction="HANNING" polnProducts="XX,YY" synthProf="ACA_CDP">
// <sbl:centerFrequency unit="GHz">3.0</sbl:centerFrequency>
// <sbl:spectralAveragingFactor>1</sbl:spectralAveragingFactor>
// <sbl:name>SW-1</sbl:name>
// <sbl:effectiveBandwidth unit="GHz">2.0</sbl:effectiveBandwidth>
// <sbl:effectiveNumberOfChannels>128</sbl:effectiveNumberOfChannels>
// <sbl:associatedSpectralWindowNumberInPair>0</sbl:associatedSpectralWindowNumberInPair>
// <sbl:useThisSpectralWindow>true</sbl:useThisSpectralWindow>
// <sbl:representativeWindow>false</sbl:representativeWindow>
// <sbl:frqChProfReproduction>true</sbl:frqChProfReproduction>
// <sbl:ChannelAverageRegion>
// <sbl:startChannel>6</sbl:startChannel>
// <sbl:numberChannels>115</sbl:numberChannels>
// </sbl:ChannelAverageRegion>
// </sbl:ACASpectralWindow>
vector<int> getSpwSubwindows() const;
private:
struct ScanProperties {
// The Int represents the data description ID,
// The Double represents the time of the first time stamp,
// The Quantity represents the exposure time for the corresponding
// data description ID and time stamp
FirstExposureTimeMap firstExposureTime;
// the key is the spwID, the value is the meanInterval for
// the subscan and that spwID
std::map<uInt, Quantity> meanInterval;
// number of rows for each spectral window
std::map<uInt, rownr_t> spwNRows;
// time range (which takes into account helf of the corresponding
// interval, which is not accounted for in the SubScanProperties times
std::pair<Double, Double> timeRange;
// times for each spectral window
std::map<uInt, std::set<double> > times;
};
struct SpwProperties {
double bandwidth;
QVD chanfreqs;
QVD chanwidths;
int netsideband;
// The sum of all channel frequencies divided by the number of channels
Quantity meanfreq;
// The mean of the low frequency extent of the lowest frequency channel and
// the high frequency extend of the highest frequency channel. Often, but not
// necessarily, the same as meanfreq
Quantity centerfreq;
uInt nchans;
// The center frequencies of the two channels at the edges of the window
vector<double> edgechans;
uInt bbcno;
// from the REF_FREQUENCY column
MFrequency reffreq;
String name;
// EFFECTIVE_BANDWIDTH
QVD effbw;
// RESOLUTION
QVD resolution;
// CAS-13749 value for adhoc ALMA-specific SPECTRAL_WINDOW column
String corrbit;
// CAS-13973 ALMA specific quantities sw = subwindow, rb = receiver band
int rb;
int sw;
};
// represents non-primary key data for a SOURCE table row
struct SourceProperties {
String name;
std::shared_ptr<vector<MFrequency> > restfreq;
std::shared_ptr<vector<String> > transition;
};
// The general pattern is that a mutable gets set only once, on demand, when its
// setter is called for the first time. If this pattern is broken, defective behavior
// will occur.
const MeasurementSet* _ms;
Bool _showProgress;
mutable Float _cacheMB;
const Float _maxCacheMB;
mutable rownr_t _nACRows, _nXCRows;
mutable uInt _nStates, _nSpw, _nFields, _nAntennas,
_nObservations, _nScans, _nArrays, _nrows, _nPol, _nDataDescIDs;
mutable std::map<ScanKey, std::set<uInt> > _scanToSpwsMap, _scanToDDIDsMap;
mutable vector<uInt> _dataDescIDToSpwMap, _dataDescIDToPolIDMap;
mutable std::map<Int, std::set<uInt> > _fieldToSpwMap;
mutable std::map<ScanKey, std::set<Int> > _scanToStatesMap, _scanToFieldsMap, _scanToAntennasMap;
mutable std::map<Int, std::set<Int> > _fieldToStatesMap, _stateToFieldsMap, _sourceToFieldsMap;
mutable std::map<std::pair<uInt, uInt>, uInt> _spwPolIDToDataDescIDMap;
mutable std::vector<std::vector<uInt>> _spwIDToPolIDMap;
mutable std::map<String, std::set<uInt> > _antennaNameToIDMap;
mutable std::shared_ptr<const std::map<ScanKey, ScanProperties> > _scanProperties;
mutable std::shared_ptr<const std::map<SubScanKey, SubScanProperties> > _subScanProperties;
mutable std::map<String, std::set<Int> > _intentToFieldIDMap;
mutable std::map<String, std::set<ScanKey> > _intentToScansMap;
mutable std::map<String, std::set<SubScanKey> > _intentToSubScansMap;
mutable std::map<std::pair<ScanKey, uInt>, std::set<uInt> > _scanSpwToPolIDMap;
mutable std::set<String> _uniqueIntents;
mutable std::set<Int> _uniqueFieldIDs, _uniqueStateIDs, _uniqueAntennaIDs;
mutable std::set<uInt> _avgSpw, _tdmSpw, _fdmSpw, _wvrSpw, _sqldSpw, _uniqueDataDescIDs;
mutable std::shared_ptr<std::map<SubScanKey, rownr_t> > _subScanToNACRowsMap, _subScanToNXCRowsMap;
mutable std::shared_ptr<std::map<Int, rownr_t> > _fieldToNACRowsMap, _fieldToNXCRowsMap;
mutable std::map<ScanKey, std::set<String> > _scanToIntentsMap;
mutable std::shared_ptr<const std::map<SubScanKey, std::set<String> > > _subScanToIntentsMap;
mutable vector<std::set<String> > _stateToIntentsMap, _spwToIntentsMap, _fieldToIntentsMap;
mutable vector<SpwProperties> _spwInfo;
mutable vector<std::set<Int> > _spwToFieldIDsMap, _obsToArraysMap;
mutable vector<std::set<ScanKey> > _spwToScansMap, _ddidToScansMap, _fieldToScansMap;
mutable vector<String> _fieldNames, _antennaNames, _observatoryNames,
_stationNames, _observers, _projects, _sourceNames, _fieldCodes;
mutable vector<vector<String> > _schedules;
mutable vector<vector<Int> > _corrTypes;
mutable vector<Array<Int> >_corrProds;
mutable std::shared_ptr<std::map<ScanKey, std::set<Double> > > _scanToTimesMap;
std::map<String, std::set<uInt> > _intentToSpwsMap;
mutable std::map<String, std::set<Double> > _intentToTimesMap;
std::shared_ptr<std::map<Int, std::set<Double> > > _fieldToTimesMap;
std::shared_ptr<std::map<Double, std::set<Int> > > _timeToFieldsMap;
mutable vector<MPosition> _observatoryPositions, _antennaPositions;
mutable vector<QVD > _antennaOffsets;
mutable QVD _antennaDiameters;
Matrix<Bool> _uniqueBaselines;
Quantity _exposureTime;
mutable Double _nUnflaggedACRows, _nUnflaggedXCRows;
mutable std::shared_ptr<vector<Double> > _unflaggedFieldNACRows, _unflaggedFieldNXCRows;
mutable std::shared_ptr<std::map<SubScanKey, Double> > _unflaggedSubScanNACRows, _unflaggedSubScanNXCRows;
const String _taqlTableName;
const vector<const Table*> _taqlTempTable;
mutable Bool _spwInfoStored, _forceSubScanPropsToCache;
vector<std::map<Int, Quantity> > _firstExposureTimeMap;
mutable vector<Int> _numCorrs, _source_sourceIDs, _field_sourceIDs;
mutable std::set<ArrayKey> _arrayKeys;
mutable std::set<ScanKey> _scanKeys;
mutable std::set<SubScanKey> _subscans;
mutable std::map<ScanKey, std::set<SubScanKey> > _scanToSubScans;
mutable std::map<ArrayKey, std::set<SubScanKey> > _arrayToSubScans;
mutable vector<std::pair<MEpoch, MEpoch> > _timeRangesForObs;
mutable vector<MDirection> _phaseDirs, _sourceDirs;
mutable vector<std::pair<Quantity, Quantity> > _properMotions;
mutable std::map<SourceKey, SourceProperties> _sourceInfo;
mutable std::shared_ptr<std::set<Int> > _ephemFields;
mutable std::shared_ptr<const Quantum<Vector<Double> > > _sourceTimes;
// disallow copy constructor and = operator
MSMetaData(const MSMetaData&);
MSMetaData operator =(const MSMetaData&);
// This comment from thunter in the original ValueMapping python class
// # Determine the number of polarizations for the first OBSERVE_TARGET intent.
// # Used by plotbandpass for BPOLY plots since the number of pols cannot be inferred
// # correctly from the caltable alone. You cannot not simply use the first row, because
// # it may be a pointing scan which may have different number of polarizations than what
// # the TARGET and BANDPASS calibrator will have.
// # -- T. Hunter
// uInt _getNumberOfPolarizations();
void _setSpwInfo(const MeasurementSet& ms);
// set metadata from OBSERVATION table
void _setObservation(const MeasurementSet& ms);
Bool _cacheUpdated(const Float incrementInBytes) const;
void _checkField(uInt fieldID) const;
void _checkScan(const ScanKey& key) const;
void _checkScans(const std::set<ScanKey>& scanKeys) const;
void _checkSubScan(const SubScanKey& key) const;
static void _checkTolerance(const Double tol);
void _computeScanAndSubScanProperties(
std::shared_ptr<std::map<ScanKey, MSMetaData::ScanProperties> >& scanProps,
std::shared_ptr<std::map<SubScanKey, MSMetaData::SubScanProperties> >& subScanProps,
Bool showProgress
) const;
static void _getScalarIntColumn(
Vector<Int>& v, TableProxy& table, const String& colname,
rownr_t beginRow, rownr_t nrows
);
static void _getScalarDoubleColumn(
Vector<Double>& v, TableProxy& table, const String& colname,
rownr_t beginRow, rownr_t nrows
);
static void _getScalarQuantDoubleColumn(
Quantum<Vector<Double> >& v, TableProxy& table, const String& colname,
rownr_t beginRow, rownr_t nrows
);
void _mergeScanProps(
std::shared_ptr<std::map<ScanKey, MSMetaData::ScanProperties> >& scanProps,
std::shared_ptr<std::map<SubScanKey, MSMetaData::SubScanProperties> >& subScanProps,
const std::vector<
std::pair<std::map<ScanKey, ScanProperties>, std::map<SubScanKey, SubScanProperties> >
>& props
) const;
void _createScanRecords(
Record& parent, const ArrayKey& arrayKey,
const std::map<SubScanKey, SubScanProperties>& subScanProps
) const;
void _createSubScanRecords(
Record& parent, rownr_t& scanNRows, std::set<Int>& antennasForScan,
const ScanKey& scanKey, const std::map<SubScanKey, SubScanProperties>& subScanProps
) const;
static void _createTimeStampRecords(
Record& parent,
const SubScanProperties& subScanProps
);
// convert a QVD in frequency units to velocity units using
// the give reference frequency. No explicit checking is done
// for unit correctness of the inputs.
static QVD _freqWidthToVelWidth(const QVD& v, const Quantity& refFreq);
// if _scanProps has been generated, just return it. If the caller has
// configured the object to generate _scanProps at some point, this call will
// generate it. Otherwise, the returned object contains a null pointer.
std::shared_ptr<const std::map<ScanKey, ScanProperties> > _generateScanPropsIfWanted() const;
// if _subScanProperties has been generated, just return it. If
// the caller has configured the object to generate _subScanPropertiess
// at some point, this call will generate it. Otherwise, the returned object
// contains a null pointer.
std::shared_ptr<const std::map<SubScanKey, SubScanProperties> >
_generateSubScanPropsIfWanted() const;
vector<String> _getAntennaNames(
std::map<String, std::set<uInt> >& namesToIDsMap
) const;
vector<MPosition> _getAntennaPositions() const;
void _getAntennas(
std::shared_ptr<Vector<Int> >& ant1,
std::shared_ptr<Vector<Int> >& ant2
) const;
std::shared_ptr<Vector<Int> > _getArrayIDs() const;
std::map<ArrayKey, std::set<SubScanKey> > _getArrayKeysToSubScanKeys() const;
// Uses openmp for parallel processing
std::pair<std::map<ScanKey, ScanProperties>, std::map<SubScanKey, SubScanProperties> >
_getChunkSubScanProperties(
const Vector<Int>& scans, const Vector<Int>& fields,
const Vector<Int>& ddIDs, const Vector<Int>& states,
const Vector<Double>& times, const Vector<Int>& arrays,
const Vector<Int>& observations, const Vector<Int>& ant1,
const Vector<Int>& ant2, const Quantum<Vector<Double> >& exposureTimes,
const Quantum<Vector<Double> >& intervalTimes, const vector<uInt>& ddIDToSpw,
rownr_t beginRow, rownr_t endRow
) const;
std::shared_ptr<Vector<Int> > _getDataDescIDs() const;
// get the field IDs of ephemeris objects
std::shared_ptr<std::set<Int> > _getEphemFieldIDs() const;
std::shared_ptr<Quantum<Vector<Double> > > _getExposureTimes() const;
std::shared_ptr<Vector<Int> > _getFieldIDs() const;
// If there are no intents, then fieldToIntentsMap will be of length
// nFields() and all of its entries will be the empty set, and
// intentToFieldsMap will be empty
void _getFieldsAndIntentsMaps(
vector<std::set<String> >& fieldToIntentsMap,
std::map<String, std::set<Int> >& intentToFieldsMap
);
void _getFieldsAndScansMaps(
vector<std::set<ScanKey> >& fieldToScansMap,
std::map<ScanKey, std::set<Int> >& scanToFieldsMap
) const;
void _getFieldsAndSpwMaps(
std::map<Int, std::set<uInt> >& fieldToSpwMap,
vector<std::set<Int> >& spwToFieldMap
) const;
void _getFieldsAndStatesMaps(
std::map<Int, std::set<Int> >& fieldToStatesMap,
std::map<Int, std::set<Int> >& stateToFieldsMap
);
void _getFieldsAndTimesMaps(
std::shared_ptr<std::map<Int, std::set<Double> > >& fieldToTimesMap,
std::shared_ptr<std::map<Double, std::set<Int> > >& timesToFieldMap
);
std::shared_ptr<ArrayColumn<Bool> > _getFlags() const;
std::map<String, std::set<Double> > _getIntentsToTimesMap() const;
std::shared_ptr<Quantum<Vector<Double> > > _getIntervals() const;
std::shared_ptr<Vector<Int> > _getObservationIDs() const;
std::shared_ptr<Vector<Int> > _getScans() const;
vector<std::set<String> > _getSpwToIntentsMap();
// polarization ids will be sorted in ascending order in all
// member vectors
std::vector<std::vector<uInt>> _getSpwToPolMap() const;
std::shared_ptr<Vector<Int> > _getStateIDs() const;
std::shared_ptr<Vector<Double> > _getTimes() const;
//std::shared_ptr<std::map<Double, TimeStampProperties> > _getTimeStampProperties() const;
Bool _hasIntent(const String& intent) const;
Bool _hasFieldID(Int fieldID) const;
Bool _hasStateID(Int stateID) const;
void _hasAntennaID(Int antennaID);
std::map<Double, Double> _getTimeToTotalBWMap(
const Vector<Double>& times, const Vector<Int>& ddIDs
);
MDirection _getInterpolatedDirection(
const MSPointingColumns& pCols, const Int& index,
const Double& time
) const;
//map<SubScanKey, Quantity> _getMeanExposureTimes() const;
vector<std::set<Int> > _getObservationIDToArrayIDsMap() const;
vector<MPosition> _getObservatoryPositions();
void _getRowStats(
rownr_t& nACRows, rownr_t& nXCRows,
std::map<SubScanKey, rownr_t>*& subScanToNACRowsMap,
std::map<SubScanKey, rownr_t>*& subScanToNXCRowsMap,
std::map<Int, rownr_t>*& fieldToNACRowsMap,
std::map<Int, rownr_t>*& fieldToNXCRowsMap
) const;
void _getRowStats(
rownr_t& nACRows, rownr_t& nXCRows,
std::shared_ptr<std::map<SubScanKey, rownr_t> >& scanToNACRowsMap,
std::shared_ptr<std::map<SubScanKey, rownr_t> >& scanToNXCRowsMap,
std::shared_ptr<std::map<Int, rownr_t> >& fieldToNACRowsMap,
std::shared_ptr<std::map<Int, rownr_t> >& fieldToNXCRowsMap
) const;
// get scan properties
std::shared_ptr<const std::map<ScanKey, MSMetaData::ScanProperties> > _getScanProperties(
Bool showProgress
) const;
// get the scan keys in the specified set that have the associated arrayKey
std::set<ScanKey> _getScanKeys(
const std::set<ScanKey>& scanKeys, const ArrayKey& arrayKey
) const;
// get all valid scan numbers associated with the specified arrayKey
std::set<Int> _getScanNumbers(const ArrayKey& arrayKey) const;
void _getScansAndDDIDMaps(
std::map<ScanKey, std::set<uInt> >& scanToDDIDMap,
vector<std::set<ScanKey> >& ddIDToScanMap
) const;
void _getScansAndIntentsMaps(
std::map<ScanKey, std::set<String> >& scanToIntentsMap,
std::map<String, std::set<ScanKey> >& intentToScansMap
) const;
void _getScansAndSpwMaps(
std::map<ScanKey, std::set<uInt> >& scanToSpwMap,
vector<std::set<ScanKey> >& spwToScanMap
) const;
std::map<ScanKey, std::set<Int> > _getScanToAntennasMap() const;
std::map<ScanKey, std::set<SubScanKey> > _getScanToSubScansMap() const;
std::shared_ptr<std::map<ScanKey, std::set<Double> > > _getScanToTimesMap() const;
std::map<SourceKey, SourceProperties> _getSourceInfo() const;
vector<SpwProperties> _getSpwInfo(
std::set<uInt>& avgSpw, std::set<uInt>& tdmSpw,
std::set<uInt>& fdmSpw, std::set<uInt>& wvrSpw,
std::set<uInt>& sqldSpw
) const;
void _getSpwsAndIntentsMaps(
vector<std::set<String> >& spwToIntentsMap,
std::map<String, std::set<uInt> >& intentToSpwsMap
);
vector<SpwProperties> _getSpwInfo2(
std::set<uInt>& avgSpw, std::set<uInt>& tdmSpw, std::set<uInt>& fdmSpw,
std::set<uInt>& wvrSpw, std::set<uInt>& sqldSpw
) const;
void _getStateToIntentsMap(
vector<std::set<String> >& statesToIntentsMap,
std::set<String>& uniqueIntents
) const;
vector<String> _getStationNames();
void _getSubScansAndIntentsMaps(
std::shared_ptr<const std::map<SubScanKey, std::set<String> > >& subScanToIntentsMap,
std::map<String, std::set<SubScanKey> >& intentToSubScansMap
) const;
void _getScanAndSubScanProperties(
std::shared_ptr<const std::map<ScanKey, ScanProperties> >& scanProps,
std::shared_ptr<const std::map<SubScanKey, SubScanProperties> >& subScanProps,
Bool showProgress
) const;
std::set<SubScanKey> _getSubScanKeys() const;
// get subscans related to the given scan
std::set<SubScanKey> _getSubScanKeys(const ScanKey& scanKey) const;
void _getUnflaggedRowStats(
Double& nACRows, Double& nXCRows,
std::shared_ptr<std::map<SubScanKey, Double> >& subScanToNACRowsMap,
std::shared_ptr<std::map<SubScanKey, Double> >& subScanToNXCRowsMap,
std::shared_ptr<vector<Double> >& fieldToNACRowsMap,
std::shared_ptr<vector<Double> >& fieldToNXCRowsMap
) const;
void _getUnflaggedRowStats(
Double& nACRows, Double& nXCRows,
vector<Double>*& fieldNACRows, vector<Double>*& fieldNXCRows,
std::map<SubScanKey, Double>*& scanNACRows,
std::map<SubScanKey, Double>*& scanNXCRows
) const;
static void _modifyFirstExposureTimeIfNecessary(
FirstExposureTimeMap& current, const FirstExposureTimeMap& test
);
static void _modifyFirstExposureTimeIfNecessary(
FirstExposureTimeMap& current, Int dataDescID,
Double time, Double exposure, const Unit& eunit
);
static uInt _sizeof(const std::map<Double, MSMetaData::TimeStampProperties> & m);
template <class T>
static uInt _sizeof(const std::map<T, std::set<String> >& m);
template <class T, class U>
static uInt _sizeof(const std::map<T, std::set<U> >& m);
template <class T, class U>
static uInt _sizeof(const std::map<T, U>& m);
static uInt _sizeof(const vector<std::set<String> >& m);
static uInt _sizeof(const vector<String>& m);
static uInt _sizeof(const vector<vector<String> >& m);
template <class T>
static uInt _sizeof(const vector<T>& v);
static uInt _sizeof(const Quantum<Vector<Double> >& m);
template <class T>
static uInt _sizeof(const vector<std::set<T> >& v);
template <class T> static uInt _sizeof(const std::map<String, std::set<T> >& map);
static uInt _sizeof(const vector<std::map<Int, Quantity> >& map);
static uInt _sizeof(const std::map<std::pair<Int, uInt>, std::set<uInt> >& map);
static std::map<Int, uInt> _toUIntMap(const Vector<Int>& v);
template <class T> std::shared_ptr<Vector<T> > _getMainScalarColumn(
MSMainEnums::PredefinedColumns col
) const;
std::shared_ptr<vector<int>> _almaReceiverBands(uint nspw) const;
};
}
#endif
|