File: ChebyshevParam.h

package info (click to toggle)
casacore 3.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 51,912 kB
  • sloc: cpp: 471,569; fortran: 16,372; ansic: 7,416; yacc: 4,714; lex: 2,346; sh: 1,865; python: 629; perl: 531; sed: 499; csh: 201; makefile: 32
file content (551 lines) | stat: -rw-r--r-- 21,761 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
//# ChebyshevParam.h: Parameter handling for Chebyshev polynomial
//# Copyright (C) 2000,2001,2002,2003,2005
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: casa-feedback@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//#! ========================================================================

#ifndef SCIMATH_CHEBYSHEVPARAM_H
#define SCIMATH_CHEBYSHEVPARAM_H

#include <casacore/casa/aips.h>
#include <casacore/casa/Arrays/ArrayFwd.h>
#include <casacore/casa/BasicSL/String.h>
#include <casacore/scimath/Functionals/Function1D.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

//# Forward Declarations
class RecordInterface;

// <summary>
// Define enums for Chebyshev classes
// </summary>
class ChebyshevEnums
{
public:
    // Modes that identify how this function behaves outside its Chebyshev
    // interval (see setInterval()).
    enum OutOfIntervalMode {

	// return a constant, default value.  The value returned is 
	// set with setDefault().
	CONSTANT,

	// return a constant value equal to the zero-th order coefficient
	ZEROTH,

	// evaluate the polynomial based on its coefficients just as it
	// would be inside the interval.  Thus, the function's range is not
	// guaranteed to remain within the characteristic bounds of the
	// Chebyshev interval.  
	EXTRAPOLATE,

	// evaluate the function as if the range is cyclic, repeating the
	// range values from its canonical domain.  The period of the cycle
	// will be equal to getIntervalMax()-getIntervalMin().  When the 
	// function is evaluated outside this interval, the input value will 
	// shifted an integer number of periods until it falls within the 
	// Chebyshev interval; the value returned is the polynomial evaluated 
	// at the shifted (x-axis) value.  Obviously, this mode is most 
	// expensive computationally when evaluating outside the range.
	CYCLIC,

	// evaluate the function at nearest interval edge
	EDGE,

	// number of enumerators
	NOutOfIntervalModes };
};


// <summary> Parameter handling for Chebyshev polynomial parameters
// </summary>

// <use visibility=local>

// <reviewed reviewer="wbrouw" date="2001/11/12" tests="tChebyshev" demos="">
// </reviewed>

// <prerequisite>
//   <li> <linkto class="FunctionParam">FunctionParam</linkto> class
//   <li> <linkto class="Function1D">Function1D</linkto>
//   <li> <linkto class="Chebyshev">Chebyshev</linkto>
// </prerequisite>
//
// <etymology>
// This class is named after Chebyshev Type I polynomials; it handles the 
// "fixed" parameters for the function.
// </etymology>
//
// <synopsis>
// This class assists in forming and evaluating a function as a
// Chebyshev series, a linear combination of so-called Chebyshev
// polynomials.  Users do not instantiate this abstract class directly; 
// instead they instantiate the child class 
// <linkto class="Chebyshev">Chebyshev</linkto>.  This class holds the part 
// of the implementation used by the 
// <linkto class="Chebyshev">Chebyshev</linkto> class that manages the "fixed" 
// parameters of the function (e.g. the polynomial coefficients, interval of
// interest, etc.)
// 
// For a full description, see the 
// <linkto class="Chebyshev">Chebyshev</linkto> class.
// 
// </synopsis>
//
// <example>
// In this example, a 2nd order Chebyshev polynomial series is
// created.
// <srcblock>
//   // set coeffs to desired values
//   Vector<Double> coeffs(3, 1);   
//
//   // configure the function   
//   Chebyshev<Double> cheb;
//   cheb.setInterval(-0.8, 7.2);
//   cheb.setDefault(1.0);
//   cheb.setCoefficients(coeffs);
//
//   // evaluate the function as necessary
//   Double z = cheb(-0.5);    // -0.5 is within range, z = 0.78625
//   z = cheb(4.2);            // 4.2 is within range, z = 0.375
//   z = cheb(-3);             // -3 is out of the interval, z = 1
// </srcblock>
// </example>
//
// <motivation>
// This class was created to support systematic errors in the simulator tool.  
// It can be used by Jones matrix classes to vary gains in a predictable way,
// mimicing natural processes of the atmosphere or instrumental effects.  
//
// The Chebyshev implementation is split between this class, 
// <src>ChebyshevParam</src> and its child 
// <linkto class="Chebyshev">Chebyshev</linkto> to better support the 
// <linkto class="AutoDiff">AutoDiff framework</linkto> for evaluating 
// derivatives.
// </motivation>
//
// <templating arg=T>
//  <li> T should have standard numerical operators. Current
//	implementation only tested for real types (and their AutoDiffs).
// </templating>
//
// <thrown>
//    <li> Assertion if indices out-of-range
// </thrown>
//
// <todo asof="2001/08/22">
//    <li> It would be helpful to be able to convert to and from the 
//         Polynomial<T> type; this would be supported via a function,
//         Polynomial<T> polynomial(), and constructor, 
//         Chebyshev(Polynomial<T>)
// </todo>

template<class T>
class  ChebyshevParam : public Function1D<T>
{
public: 

    //# Constructors
    // create a zero-th order Chebyshev polynomial with the first coefficient
    // equal to zero.  The bounded domain is [T(-1), T(1)].  The 
    // OutOfDomainMode is CONSTANT, and the default value is T(0).
    ChebyshevParam();

    // create an n-th order Chebyshev polynomial with the coefficients
    // equal to zero.  The bounded domain is [T(-1), T(1)].  The 
    // OutOfDomainMode is CONSTANT, and the default value is T(0).
    explicit ChebyshevParam(const uInt n);

    // create a zero-th order Chebyshev polynomical with the first coefficient
    // equal to one.  
    //   min is the minimum value of its Chebyshev interval, and 
    //   max is the maximum value.  
    //   mode sets the behavior of the function outside the Chebyshev interval
    //      (see setOutOfIntervalMode() and OutOfIntervalMode enumeration 
    //      definition for details).  
    //   defval is the value returned when the function is evaluated outside
    //      the Chebyshev interval and mode=CONSTANT.
    ChebyshevParam(const T &min, const T &max,
		   ChebyshevEnums::OutOfIntervalMode
		   mode=ChebyshevEnums::CONSTANT, const T &defval=T(0));
  
    // create a fully specified Chebyshev polynomial.  
    //   coeffs holds the coefficients of the Chebyshev polynomial (see 
    //      setCoefficients() for details).
    //   min is the minimum value of its canonical range, and 
    //   max is the maximum value.  
    //   mode sets the behavior of the function outside the Chebyshev interval
    //      (see setOutOfIntervalMode() and OutOfIntervalMode enumeration 
    //      definition for details).  
    //   defval is the value returned when the function is evaluated outside
    //      the canonical range and mode=CONSTANT.
    ChebyshevParam(const Vector<T> &coeffs, const T &min, const T &max, 
		   ChebyshevEnums::OutOfIntervalMode
		   mode=ChebyshevEnums::CONSTANT, const T &defval=T(0));
  
    // create a fully specified Chebyshev polynomial.
    //   config  is a record that contains the non-coefficient data 
    //             that configures this class.
    // The fields recognized by this class are those documented for the 
    // setMode() function below.
    // <group>
    ChebyshevParam(uInt order, const RecordInterface& mode);
    ChebyshevParam(const Vector<T> &coeffs, const RecordInterface& mode);
    // </group>
  
    // create a deep copy of another Chebyshev polynomial
    // <group>
    ChebyshevParam(const  ChebyshevParam &other);
    template <class W>
      ChebyshevParam(const ChebyshevParam<W> &other) :
      Function1D<T>(other), def_p(other.getDefault()), 
      minx_p(other.getIntervalMin()), maxx_p(other.getIntervalMax()),
      mode_p(other.getOutOfIntervalMode()) {}
    // </group>

    // make a (deep) copy of another Chebyshev polynomial
    ChebyshevParam<T> &operator=(const ChebyshevParam<T> &other);
  
    // Destructor
    virtual ~ChebyshevParam();
  
    // set the Chebyshev coefficients.  
    //   coeffs holds the coefficients in order, beginning with the zero-th 
    //      order term.  The order of the polynomial, then, would be the size 
    //      of the Vector minus one.  
    void setCoefficients(const Vector<T> &coeffs);

    // set a particular Chebyshev coefficient.
    //   which is the coefficient order (i.e. 0 refers to the constant offset).
    //   value is the coefficient value.
    // If which is larger than current order of the function, the order will
    // be increased to the value of which, and that coefficient is set to 
    // value; missing coefficients less than this value will be set to zero.
    // Thus, the order can be increased with this function; however, it cannot
    // be decreased (even if the highest order coefficient is set to zero).
    // To lower the order, use setCoefficients() with a Vector having the 
    // desired number of coefficients.
    void setCoefficient(const uInt which, const T &value);
  
    // return the current set of coefficients into a given Vector.  
    const Vector<T> &getCoefficients() const;
  
    // return a particular coefficient.  
    //   which is the coefficient order (i.e. 0 refers to the constant offset).
    //     If which is out of range, zero is returned.
    T getCoefficient(const uInt which) const {
	return ((which < nparameters()) ? param_p[which] : T(0)); }
  
    // return the number of coeefficients currently loaded.  This does not
    // guarantee that the coefficients are non-zero
    uInt nCoefficients() const { return nparameters(); }
    
    // set the Chebyshev interval for this function.  The function will 
    // be scaled and shifted to such that the central bounded range of the 
    // Chebyshev polynomials ([-1, 1] in untransformed space) spans the 
    // given range.  
    //   min is the minimum value for the interval, and 
    //   max is the maximum value.  See setOutOfIntervalMode() for the behavior 
    //      of this function outside the set range.
    void setInterval(T xmin, T xmax) {
	if (xmin < xmax) { minx_p = xmin; maxx_p = xmax;
	} else { minx_p = xmax; maxx_p = xmin; } }   

    // return the minimum value for the currently Chebyshev interval.
    // See setInterval() for additional details.
    T getIntervalMin() const { return minx_p; }

    // return the maximum value for the currently Chebyshev interval.
    // See setInterval() for additional details.
    T getIntervalMax() const { return maxx_p; }

    // set the behavior of this function when it is evaluated outside its
    // Chebyshev interval
    void setOutOfIntervalMode(ChebyshevEnums::OutOfIntervalMode mode)
      { mode_p = mode; }

    // return the behavior of this function when it is evaluated outside of 
    // its Chebyshev interval.
    ChebyshevEnums::OutOfIntervalMode getOutOfIntervalMode() const
      { return mode_p; }

    // set the default value of this function.  This value is used when 
    // the getOutOfIntervalMode() returns Chebyshev::CONSTANT; it is returned
    // when the a value outside of the Chebyshev interval is passed to 
    // the () operator.
    void setDefault(const T &val) { def_p = val; }

    // return the currently set default value.  See setDefault() for details 
    // on the use of this value.
    const T &getDefault() const { return def_p; }

    // return the order of this polynomial.  This returns the value of 
    // nCoefficients()-1;
    uInt order() const { return param_p.nelements() - 1; }

    // transform a set of Chebyshev polynomial coefficients into a set 
    // representing the series' derivative.  coeffs should be assuming
    // an interval of [-1, 1].  xmin and xmax can be provided to transform
    // the series to another interval.
    static void derivativeCoeffs(Vector<T> &coeffs, const T &xmin=T(-1),
				 const T &xmax=T(1));
  
    // convert a set of Chebyshev polynomial coefficients to power series
    // coefficients.  The values passed in coeffs are taken to 
    // be chebyshev coefficients; these values will be replaced with the 
    // power series coefficients.  They should be ordered beginning
    // with the zero-th order coefficient.  
    static void chebyshevToPower(Vector<T> &coeffs);

    // convert a set of power series coefficients to Chebyshev
    // polynomial coefficients.  The values passed in coeffs are taken to 
    // be power series coefficients; these values will be replaced with the 
    // Chebyshev polynomial coefficients.  They should be ordered beginning
    // with the zero-th order coefficient.  
    static void powerToChebyshev(Vector<T> &coeffs);

    // Give name of function
    virtual const String &name() const { static String x("chebyshev");
    return x; }

protected:

    // Default value if outside interval
    T def_p;
    // Lowest interval bound
    T minx_p;
    // Highest inetrval bound
    T maxx_p;
    // Out-of-interval handling type
    ChebyshevEnums::OutOfIntervalMode mode_p;

    static Vector<String> modes_s;

  //# Make members of parent classes known.
protected:
  using Function1D<T>::param_p;
public:
  using Function1D<T>::nparameters;
  using Function1D<T>::setMode;
};


// <summary> A ChebyshevParam with the get/setMode implementation </summary>
//
// <synopsis>
// The get/setMode() implementation is separated from ChebyshevParam
// to enable simple specialization for AutoDiff.  See
// <linkto class="ChebyshevParam">ChebyshevParam</linkto> for documentation
// </synopsis>
template <class T>
class ChebyshevParamModeImpl : public ChebyshevParam<T>
{
public:
    ChebyshevParamModeImpl() : ChebyshevParam<T>() { }

    explicit ChebyshevParamModeImpl(const uInt n) : ChebyshevParam<T>(n) {}

    ChebyshevParamModeImpl(const T &min, const T &max,
			   typename ChebyshevEnums::OutOfIntervalMode mode=ChebyshevEnums::CONSTANT,
			   const T &defval=T(0))
	: ChebyshevParam<T>(min, max, mode, defval) {}
  
    ChebyshevParamModeImpl(const Vector<T> &coeffs, 
			   const T &min, const T &max, 
			   typename ChebyshevEnums::OutOfIntervalMode mode=ChebyshevEnums::CONSTANT, 
			   const T &defval=T(0))
	: ChebyshevParam<T>(coeffs, min, max, mode, defval) {}
  
    ChebyshevParamModeImpl(uInt order, const RecordInterface& mode)
	: ChebyshevParam<T>(order, mode) { setMode(mode); }
    ChebyshevParamModeImpl(const Vector<T> &coeffs, 
			   const RecordInterface& mode)
	: ChebyshevParam<T>(coeffs, mode) { setMode(mode); }
  
    ChebyshevParamModeImpl(const ChebyshevParamModeImpl &other) 
	: ChebyshevParam<T>(other) {}
  
    // get/set the function mode.  This is an alternate way to get/set the 
    // non-coefficient data for this function.  The supported record fields 
    // are as follows:
    // <pre>
    // Field Name     Type            Role
    // -------------------------------------------------------------------
    // min            template type   the minimum value of the Chebyshev 
    //              			interval of interest
    // max            template type   the maximum value of the Chebyshev 
    //              			interval of interest
    // intervalMode   TpString        the out-of-interval mode; recognized
    //                                  values are "constant", "zeroth",
    //                                  "extrapolate", "cyclic", and "edge".
    //                                  setMode() recognizes a 
    //                                  case-insensitive, minimum match.
    // default        template type   the out-of-range value that is returned
    //                                  when the out-of-interval mode is 
    //                                  "constant".
    // </pre>
    // An exception is thrown if interval mode is unrecognized.
    // <group>
    virtual void setMode(const RecordInterface& mode);
    virtual void getMode(RecordInterface& mode) const;
    // </group>

    // return True if the implementing function supports a mode.  This
    // implementation always returns True.
    virtual Bool hasMode() const;

  //# Make members of parent classes known.
protected:
  using ChebyshevParam<T>::modes_s;
public:
  using ChebyshevParam<T>::setOutOfIntervalMode;
  using ChebyshevParam<T>::getOutOfIntervalMode;
  using ChebyshevParam<T>::getIntervalMin;
  using ChebyshevParam<T>::getIntervalMax;
  using ChebyshevParam<T>::getDefault;
};

#define ChebyshevParamModeImpl_PS ChebyshevParamModeImpl

// <summary> Partial specialization of ChebyshevParamModeImpl for 
// <src>AutoDiff</src>
// </summary>
// <synopsis>
// <note role=warning> The name <src>ChebyshevParamModeImpl_PS</src> is only 
// for cxx2html limitations.  
// </note>
// </synopsis>
template <class T>
class ChebyshevParamModeImpl_PS<AutoDiff<T> > 
    : public ChebyshevParam<AutoDiff<T> > 
{
public:
    ChebyshevParamModeImpl_PS() : ChebyshevParam<AutoDiff<T> >() { }

    explicit ChebyshevParamModeImpl_PS(const uInt n) 
	: ChebyshevParam<AutoDiff<T> >(n) {}

    ChebyshevParamModeImpl_PS(const AutoDiff<T> &min, const AutoDiff<T> &max,
			      typename ChebyshevEnums::OutOfIntervalMode mode=ChebyshevEnums::CONSTANT,
			      const AutoDiff<T> &defval=AutoDiff<T>(0))
	: ChebyshevParam<AutoDiff<T> >(min, max, mode, defval) {}
  
    ChebyshevParamModeImpl_PS(const Vector<AutoDiff<T> > &coeffs, 
			      const AutoDiff<T> &min, const AutoDiff<T> &max, 
			      typename ChebyshevEnums::OutOfIntervalMode mode=ChebyshevEnums::CONSTANT, 
			      const AutoDiff<T> &defval=AutoDiff<T>(0))
	: ChebyshevParam<AutoDiff<T> >(coeffs, min, max, mode, defval) {}
  
    ChebyshevParamModeImpl_PS(uInt order, const RecordInterface& mode)
	: ChebyshevParam<AutoDiff<T> >(order, mode) {}
    ChebyshevParamModeImpl_PS(const Vector<AutoDiff<T> > &coeffs, 
			      const RecordInterface& mode)
	: ChebyshevParam<AutoDiff<T> >(coeffs, mode) {}
  
    ChebyshevParamModeImpl_PS(const ChebyshevParamModeImpl_PS &other) 
	: ChebyshevParam<AutoDiff<T> >(other) {}
  
    virtual void setMode(const RecordInterface& mode);
    virtual void getMode(RecordInterface& mode) const;

  //# Make members of parent classes known.
protected:
  using ChebyshevParam<AutoDiff<T> >::modes_s;
public:
  using ChebyshevParam<AutoDiff<T> >::setOutOfIntervalMode;
  using ChebyshevParam<AutoDiff<T> >::getOutOfIntervalMode;
  using ChebyshevParam<AutoDiff<T> >::getIntervalMin;
  using ChebyshevParam<AutoDiff<T> >::getIntervalMax;
  using ChebyshevParam<AutoDiff<T> >::getDefault;
};


#define ChebyshevParamModeImpl_PSA ChebyshevParamModeImpl

// <summary> Partial specialization of ChebyshevParamModeImpl for 
// <src>AutoDiff</src>
// </summary>
// <synopsis>
// <note role=warning> The name <src>ChebyshevParamModeImpl_PS</src> is only 
// for cxx2html limitations.  
// </note>
// </synopsis>
template <class T>
class ChebyshevParamModeImpl_PSA<AutoDiffA<T> > 
    : public ChebyshevParam<AutoDiffA<T> > 
{
public:
    ChebyshevParamModeImpl_PSA() : ChebyshevParam<AutoDiffA<T> >() { }

    explicit ChebyshevParamModeImpl_PSA(const uInt n) 
	: ChebyshevParam<AutoDiffA<T> >(n) {}

    ChebyshevParamModeImpl_PSA(const AutoDiffA<T> &min, 
			       const AutoDiffA<T> &max,
			       typename ChebyshevEnums::OutOfIntervalMode mode=ChebyshevEnums::CONSTANT,
			       const AutoDiffA<T> &defval=AutoDiffA<T>(0))
	: ChebyshevParam<AutoDiffA<T> >(min, max, mode, defval) {}
  
    ChebyshevParamModeImpl_PSA(const Vector<AutoDiffA<T> > &coeffs, 
			       const AutoDiffA<T> &min, 
			       const AutoDiffA<T> &max, 
			       typename ChebyshevEnums::OutOfIntervalMode mode=ChebyshevEnums::CONSTANT, 
			       const AutoDiffA<T> &defval=AutoDiffA<T>(0))
	: ChebyshevParam<AutoDiffA<T> >(coeffs, min, max, mode, defval) {}
  
    ChebyshevParamModeImpl_PSA(uInt order, const RecordInterface& mode)
	: ChebyshevParam<AutoDiffA<T> >(order, mode) {}
    ChebyshevParamModeImpl_PSA(const Vector<AutoDiffA<T> > &coeffs, 
			      const RecordInterface& mode)
	: ChebyshevParam<AutoDiffA<T> >(coeffs, mode) {}
  
    ChebyshevParamModeImpl_PSA(const ChebyshevParamModeImpl_PSA &other) 
	: ChebyshevParam<AutoDiffA<T> >(other) {}
  
    virtual void setMode(const RecordInterface& mode);
    virtual void getMode(RecordInterface& mode) const;

  //# Make members of parent classes known.
protected:
  using ChebyshevParam<AutoDiffA<T> >::modes_s;
public:
  using ChebyshevParam<AutoDiffA<T> >::setOutOfIntervalMode;
  using ChebyshevParam<AutoDiffA<T> >::getOutOfIntervalMode;
  using ChebyshevParam<AutoDiffA<T> >::getIntervalMin;
  using ChebyshevParam<AutoDiffA<T> >::getIntervalMax;
  using ChebyshevParam<AutoDiffA<T> >::getDefault;
};




} //# NAMESPACE CASACORE - END

#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/Functionals/ChebyshevParam.tcc>
#endif //# CASACORE_NO_AUTO_TEMPLATES
#endif