1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
//# AutoDiff.h: An automatic differentiating class for functions
//# Copyright (C) 1995,1998,1999,2001,2002
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
#ifndef SCIMATH_AUTODIFF_H
#define SCIMATH_AUTODIFF_H
//# Includes
#include <casacore/casa/aips.h>
#include <casacore/casa/Arrays/Vector.h>
namespace casacore { //# NAMESPACE CASACORE - BEGIN
// <summary>
// Class that computes partial derivatives by automatic differentiation.
// </summary>
//
// <use visibility=export>
//
// <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="tAutoDiff.cc" demos="dAutoDiff.cc">
// </reviewed>
//
// <prerequisite>
// <li>
// </prerequisite>
//
// <etymology>
// Class that computes partial derivatives by automatic differentiation, thus
// AutoDiff.
// </etymology>
//
// <synopsis>
// Class that computes partial derivatives by automatic differentiation.
// It does this by storing the value of a function and the values of its first
// derivatives with respect to its independent parameters. When a mathematical
// operation is applied to an AutoDiff object, the derivative values of the
// resulting new object are computed according to chain rules
// of differentiation.
//
// Suppose we have a function f(x0,x1,...,xn) and its differential is
// <srcblock>
// df = (df/dx0)*dx0 + (df/dx1)*dx1 + ... + (df/dxn)*dxn
// </srcblock>
// We can build a class that has the value of the function,
// f(x0,x1,...,xn), and the values of the derivatives, (df/dx0), (df/dx1),
// ..., (df/dxn) at (x0,x1,...,xn), as class members.
//
// Now if we have another function, g(x0,x1,...,xn) and its differential is
// dg = (dg/dx0)*dx0 + (dg/dx1)*dx1 + ... + (dg/dxn)*dxn,
// since
// <srcblock>
// d(f+g) = df + dg,
// d(f*g) = g*df + f*dg,
// d(f/g) = df/g - fdg/g^2,
// dsin(f) = cos(f)df,
// ...,
// </srcblock>
// we can calculate
// <srcblock>
// d(f+g), d(f*g), ...,
// </srcblock> based on our information on
// <srcblock>
// df/dx0, df/dx1, ..., dg/dx0, dg/dx1, ..., dg/dxn.
// </srcblock>
// All we need to do is to define the operators and derivatives of common
// mathematical functions.
//
// To be able to use the class as an automatic differentiator of a function
// object, we need a templated function object, i.e. an object with:
// <ul>
// <li> a <src> template <class T> T operator()(const T)</src>
// <li> or multiple variable input like:
// <src> template <class T> T operator()(const Vector<T> &)</src>
// <li> all variables and constants used in the calculation of the function
// value should have been typed with T
// </ul>
// A simple example of such a function object could be:
// <srcblock>
// template <class T> f {
// public:
// T operator()(const T &x, const T &a, const T &b) {
// return a*b*x; }
// };
// // Instantiate the following versions:
// template class f<Double>;
// template class f<AutoDiff<Double> >;
// </srcblock>
// A call with values will produce the function value:
// <srcblock>
// cout << f(7.0, 2.0, 3.0) << endl;
// // will produce the value at x=7 for a=2; b=3:
// 42
// // But a call indicating that we want derivatives to a and b:
// cout << f(AutoDiff<Double>(7.0), AutoDiff<Double>(2.0, 2, 0),
// AutoDiff<Double>(3.0, 2, 1)) << endl;
// // will produce the value at x=7 for a=2; b=3:
// // and the partial derivatives wrt a and b at x=7:
// (42, [21, 14])
// // The following will calculate the derivate wrt x:
// cout << f(AutoDiff<Double>(7.0, 1, 0), AutoDiff<Double>(2.0),
// AutoDiff<Double>(3.0)) << endl;
// (42,[6])
// </srcblock>
// In actual practice, there are a few rules to obey for the structure of
// the function object if you want to use the function object and its
// derivatives in least squares fitting procedures in the Fitting
// module. The major one is to view the function object having 'fixed' and
// 'variable' parameters. I.e., rather than viewing the function as
// depending on parameters <em>a, b, x</em> (<src>f(a,b,x)</src>), the
// function is considered to be <src>f(x; a,b)</src>, where <em>a, b</em>
// are 'fixed' parameters, and <em>x</em> a variable parameter.
// Fixed parameters should be contained in a
// <linkto class=FunctionParam>FunctionParam</linkto> container object;
// while the variable parameter(s) are given in the function
// <src>operator()</src>. See <linkto class=Function>Function</linkto> class
// for details.
//
// A Gaussian spectral profile would in general have the center frequency,
// the width and the amplitude as fixed parameters, and the frequency as
// a variable. Given a spectrum, you would solve for the fixed parameters,
// given spectrum values. However, in other cases the role of the
// parameters could be reversed. An example could be a whole stack of
// observed (in the laboratory) spectra at different temperatures at
// one frequency. In that case the width would be the variable parameter,
// and the frequency one of the fixed (and to be solved for)parameters.
//
// Since the calculation of the derivatives is done with simple overloading,
// the calculation of second (and higher) derivatives is easy. It should be
// noted that higher deivatives are inefficient in the current incarnation
// (there is no knowledge e.g. about symmetry in the Jacobian). However,
// it is a very good way to get the correct answers of the derivatives. In
// practice actual production code will be better off with specialization
// of the <src>f<AutoDiff<> ></src> implementation.
//
// The <src>AutoDiff</src> class is the class the user communicates with.
// Alias classes (<linkto class=AutoDiffA>AutoDiffA</linkto> and
// <linkto class=AutoDiffA>AutoDiffX</linkto>) exists
// to make it possible to have different incarnations of a templated
// method (e.g. a generic one and a specialized one). See the
// <src>dAutoDiff</src> demo for an example of its use.
//
// All operators and functions are declared in <linkto file=AutoDiffMath.h>
// AutoDiffMath</linkto>. The output operator in
// <linkto file=AutoDiffIO.h>AutoDiffIO</linkto>.
// </synopsis>
//
// <example>
// <srcblock>
// // First a simple example.
// // We have a function of the form f(x,y,z); and want to know the
// // value of the function for x=10; y=20; z=30; and for
// // the derivatives at those point.
// // Specify the values; and indicate 3 derivatives:
// AutoDiff<Double> x(10.0, 3, 0);
// AutoDiff<Double> y(20.0, 3, 1);
// AutoDiff<Double> z(30.0, 3, 2);
// // The result will be:
// AutoDiff<Double> result = x*y + sin(z);
// cout << result.value() << endl;
// // 199.012
// cout << result.derivatives() << endl;
// // [20, 10, 0.154251]
// // Note: sin(30) = -0.988; cos(30) = 0.154251;
// </srcblock>
//
// See for an extensive example the demo program dAutoDiff. It is
// based on the example given above, and shows also the use of second
// derivatives (which is just using <src>AutoDiff<AutoDiff<Double> ></src>
// as template argument).
// <srcblock>
// // The function, with fixed parameters a,b:
// template <class T> class f {
// public:
// T operator()(const T& x) { return a_p*a_p*a_p*b_p*b_p*x; }
// void set(const T& a, const T& b) { a_p = a; b_p = b; }
// private:
// T a_p;
// T b_p;
// };
// // Call it with different template arguments:
// Double a0(2), b0(3), x0(7);
// f<Double> f0; f0.set(a0, b0);
// cout << "Value: " << f0(x0) << endl;
//
// AutoDiff<Double> a1(2,2,0), b1(3,2,1), x1(7);
// f<AutoDiff<Double> > f1; f1.set(a1, b1);
// cout << "Diff a,b: " << f1(x1) << endl;
//
// AutoDiff<Double> a2(2), b2(3), x2(7,1,0);
// f<AutoDiff<Double> > f2; f2.set(a2, b2);
// cout << "Diff x: " << f2(x2) << endl;
//
// AutoDiff<AutoDiff<Double> > a3(AutoDiff<Double>(2,2,0),2,0),
// b3(AutoDiff<Double>(3,2,1),2,1), x3(AutoDiff<Double>(7),2);
// f<AutoDiff<AutoDiff<Double> > > f3; f3.set(a3, b3);
// cout << "Diff2 a,b: " << f3(x3) << endl;
//
// AutoDiff<AutoDiff<Double> > a4(AutoDiff<Double>(2),1),
// b4(AutoDiff<Double>(3),1),
// x4(AutoDiff<Double>(7,1,0),1,0);
// f<AutoDiff<AutoDiff<Double> > > f4; f4.set(a4, b4);
// cout << "Diff2 x: " << f4(x4) << endl;
//
// // Result will be:
// // Value: 504
// // Diff a,b: (504, [756, 336])
// // Diff x: (504, [72])
// // Diff2 a,b: ((504, [756, 336]), [(756, [756, 504]), (336, [504, 112])])
// // Diff2 x: ((504, [72]), [(72, [0])])
//
// // It needed the template instantiations definitions:
// template class f<Double>;
// template class f<AutoDiff<Double> >;
// template class f<AutoDiff<AutoDiff<Double> > >;
// </srcblock>
// </example>
//
// <motivation>
// The creation of the class was motivated by least-squares non-linear fit where
// partial derivatives of a fitted function are needed. It would be tedious
// to create functionals for all partial derivatives of a function.
// </motivation>
//
// <templating arg=T>
// <li> any class that has the standard mathematical and comparisons
// defined
// </templating>
//
// <todo asof="2001/06/07">
// <li> Nothing I know
// </todo>
template <class T> class AutoDiff {
public:
//# Typedefs
typedef T value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* iterator;
typedef const value_type* const_iterator;
//# Constructors
// Construct a constant with a value of zero. Zero derivatives.
AutoDiff();
// Construct a constant with a value of v. Zero derivatives.
AutoDiff(const T &v);
// A function f(x0,x1,...,xn,...) with a value of v. The
// total number of derivatives is ndiffs, the nth derivative is one, and all
// others are zero.
AutoDiff(const T &v, const uInt ndiffs, const uInt n);
// A function f(x0,x1,...,xn,...) with a value of v. The
// total number of derivatives is ndiffs.
// All derivatives are zero.
AutoDiff(const T &v, const uInt ndiffs);
// Construct one from another
AutoDiff(const AutoDiff<T> &other);
// Construct a function f(x0,x1,...,xn) of a value v and a vector of
// derivatives derivs(0) = df/dx0, derivs(1) = df/dx1, ...
AutoDiff(const T &v, const Vector<T> &derivs);
~AutoDiff();
// Assignment operator. Assign a constant to variable. All derivatives
// are zero.
AutoDiff<T> &operator=(const T &v);
// Assign one to another.
AutoDiff<T> &operator=(const AutoDiff<T> &other);
// In-place mathematical operators
// <group>
void operator*=(const AutoDiff<T> &other);
void operator/=(const AutoDiff<T> &other);
void operator+=(const AutoDiff<T> &other);
void operator-=(const AutoDiff<T> &other);
void operator*=(const T other);
void operator/=(const T other);
void operator+=(const T other);
void operator-=(const T other);
// </group>
// Returns the value of the function
// <group>
T &value() { return val_p; }
const T &value() const { return val_p; }
// </group>
// Returns a vector of the derivatives of an AutoDiff
// <group>
const Vector<T>& derivatives() const {return grad_p; }
Vector<T>& derivatives() {return grad_p; }
void derivatives(Vector<T> &res) const;
// </group>
// Returns a specific derivative. The second set does not check for
// a valid which; the first set does through Vector addressing.
// <group>
T &derivative(uInt which) { return grad_p(which); }
const T &derivative(uInt which) const { return grad_p(which); }
T &deriv(uInt which) { return grad_p[which]; }
const T &deriv(uInt which) const { return grad_p[which]; }
// </group>
// Return total number of derivatives
uInt nDerivatives() const { return nd_p; }
// Is it a constant, i.e., with zero derivatives?
Bool isConstant() const { return nd_p == 0; }
private:
//# Data
// The function value
T val_p;
// The number of derivatives
uInt nd_p;
// The derivatives
Vector<T> grad_p;
};
} //# NAMESPACE CASACORE - END
#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/Mathematics/AutoDiff.tcc>
#endif //# CASACORE_NO_AUTO_TEMPLATES
#endif
|