File: MathFunc2.cc

package info (click to toggle)
casacore 3.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 51,912 kB
  • sloc: cpp: 471,569; fortran: 16,372; ansic: 7,416; yacc: 4,714; lex: 2,346; sh: 1,865; python: 629; perl: 531; sed: 499; csh: 201; makefile: 32
file content (392 lines) | stat: -rw-r--r-- 17,497 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
//# MathFunc2.cc: non templated static data for MathFunc
//# Copyright (C) 1993,1994,1995,1996,1999
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: casa-feedback@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA

#include <casacore/casa/BasicSL/Constants.h>
#include <casacore/scimath/Mathematics/MathFunc.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

//
// Define static members of MathFunc<T> for g++
//
#if defined(__GNUC__) && (__GNUC__<3 || (__GNUC__==3 && __GNUC_MINOR__<4))
Float MathFunc<Float>::defcutoff_p = (2.0);
Float MathFunc<Float>::defwidth_p = (1.3);
Float MathFunc<Float>::defKBwidth_p = (2.0);
Float MathFunc<Float>::defKBparm_p = (2.5);
Float MathFunc<Float>::defmodKBparm_p = (3.0);
Float MathFunc<Float>::defSphcutoff_p = (3.0);
Float MathFunc<Float>::defSphparm_p = (1.0);
Float MathFunc<Float>::defSincparm_p = (1.14);
Float MathFunc<Float>::defExpPower_p = (2.0);
Float MathFunc<Float>::defExpScale_p = (1.3/sqrt(4.0*C::ln2));
Double MathFunc<Double>::defcutoff_p = (2.0);
Double MathFunc<Double>::defwidth_p = (1.3);
Double MathFunc<Double>::defKBwidth_p = (2.0);
Double MathFunc<Double>::defKBparm_p = (2.5);
Double MathFunc<Double>::defmodKBparm_p = (3.0);
Double MathFunc<Double>::defSphcutoff_p = (3.0);
Double MathFunc<Double>::defSphparm_p = (1.0);
Double MathFunc<Double>::defSincparm_p = (1.14);
Double MathFunc<Double>::defExpPower_p = (2.0);
Double MathFunc<Double>::defExpScale_p = (1.3/sqrt(4.0*C::ln2));
#endif


/* 
   Fred Schwab's SPHFN.f -- 
   translated by f2c (version of 22 July 1992  22:54:52).
*/

#if defined(__cplusplus)
extern "C" {
#endif

/* Table of constant values 
static Int c__1 = 1;
static Int c__8 = 8;
*/

/* Subroutine */ Int sphfn(Int *ialf, Int *im, Int *iflag, float *
	eta, float *psi, Int *ierr)
{
    /* Initialized data */

    static float alpha[5] = { (float)0.,(float).5,(float)1.,(float)1.5,(float)
	    2. };
    static float p7l[25]	/* was [5][5] */ = { (float).02460495,(float)
	    -.1640964,(float).434011,(float)-.5705516,(float).4418614,(float)
	    .03070261,(float)-.1879546,(float).4565902,(float)-.5544891,(
	    float).389279,(float).03770526,(float)-.2121608,(float).4746423,(
	    float)-.5338058,(float).3417026,(float).04559398,(float)-.236267,(
	    float).4881998,(float)-.5098448,(float).2991635,(float).054325,(
	    float)-.2598752,(float).4974791,(float)-.4837861,(float).2614838 }
	    ;
    static float q7l[10] /* was [2][5] */ = { (float)1.124957,(float).3784976,(
	    float)1.07542,(float).3466086,(float)1.029374,(float).3181219,(
	    float).9865496,(float).2926441,(float).9466891,(float).2698218 };
    static float p7u[25]	/* was [5][5] */ = { (float)1.924318e-4,(float)
	    -.005044864,(float).02979803,(float)-.06660688,(float).06792268,(
	    float)5.030909e-4,(float)-.008639332,(float).04018472,(float)
	    -.07595456,(float).06696215,(float).001059406,(float)-.01343605,(
	    float).0513536,(float)-.08386588,(float).06484517,(float)
	    .001941904,(float)-.01943727,(float).06288221,(float)-.09021607,(
	    float).06193,(float).003224785,(float)-.02657664,(float).07438627,
	    (float)-.09500554,(float).05850884 };
    static float q7u[10] /* was [2][5] */ = { (float)1.45073,(float).6578685,(
	    float)1.353872,(float).5724332,(float)1.269924,(float).5032139,(
	    float)1.196177,(float).4460948,(float)1.130719,(float).3982785 };
    static float p8l[30] /* was [6][5] */ = { (float).0137803,(float)-.1097846,
	    (float).3625283,(float)-.6522477,(float).6684458,(float)-.4703556,
	    (float).01721632,(float)-.1274981,(float).3917226,(float)
	    -.6562264,(float).6305859,(float)-.4067119,(float).02121871,(
	    float)-.1461891,(float).4185427,(float)-.6543539,(float).590466,(
	    float)-.3507098,(float).02580565,(float)-.1656048,(float).4426283,
	    (float)-.6473472,(float).5494752,(float)-.3018936,(float)
	    .03098251,(float)-.1854823,(float).4637398,(float)-.6359482,(
	    float).5086794,(float)-.2595588 };
    static float q8l[10] /* was [2][5] */ = { (float)1.076975,(float).3394154,(
	    float)1.036132,(float).3145673,(float).9978025,(float).2920529,(
	    float).9617584,(float).2715949,(float).9278774,(float).2530051 };
    static float p8u[30] /* was [6][5] */ = { (float)4.29046e-5,(float)
	    -.001508077,(float).01233763,(float)-.0409127,(float).06547454,(
	    float)-.05664203,(float)1.201008e-4,(float)-.002778372,(float)
	    .01797999,(float)-.05055048,(float).07125083,(float)-.05469912,(
	    float)2.698511e-4,(float)-.004628815,(float).0247089,(float)
	    -.06017759,(float).07566434,(float)-.05202678,(float)5.259595e-4,(
	    float)-.007144198,(float).03238633,(float)-.06946769,(float)
	    .07873067,(float)-.0488949,(float)9.255826e-4,(float)-.01038126,(
	    float).04083176,(float)-.07815954,(float).08054087,(float)
	    -.04552077 };
    static float q8u[10] /* was [2][5] */ = { (float)1.379457,(float).5786953,(
	    float)1.300303,(float).5135748,(float)1.230436,(float).4593779,(
	    float)1.168075,(float).4135871,(float)1.111893,(float).3744076 };
    static float p4[25]	/* was [5][5] */ = { (float).01584774,(float)
	    -.1269612,(float).2333851,(float)-.1636744,(float).05014648,(
	    float).03101855,(float)-.1641253,(float).23855,(float)-.1417069,(
	    float).03773226,(float).050079,(float)-.1971357,(float).2363775,(
	    float)-.1215569,(float).02853104,(float).0720126,(float)-.225158,(
	    float).2293715,(float)-.1038359,(float).02174211,(float).09585932,
	    (float)-.2481381,(float).2194469,(float)-.08862132,(float)
	    .01672243 };
    static float q4[10]	/* was [2][5] */ = { (float).4845581,(float).07457381,
	    (float).4514531,(float).0645864,(float).4228767,(float).05655715,(
	    float).3978515,(float).04997164,(float).3756999,(float).044488 };
    static float p5[35]	/* was [7][5] */ = { (float).003722238,(float)
	    -.04991683,(float).1658905,(float)-.238724,(float).1877469,(float)
	    -.08159855,(float).03051959,(float).008182649,(float)-.07325459,(
	    float).1945697,(float)-.2396387,(float).1667832,(float)-.06620786,
	    (float).02224041,(float).01466325,(float)-.09858686,(float)
	    .2180684,(float)-.2347118,(float).1464354,(float)-.05350728,(
	    float).01624782,(float).02314317,(float)-.1246383,(float).2362036,
	    (float)-.2257366,(float).1275895,(float)-.04317874,(float)
	    .01193168,(float).03346886,(float)-.1503778,(float).2492826,(
	    float)-.2142055,(float).1106482,(float)-.03486024,(float)
	    .008821107 };
    static float q5[5] = { (float).241882,(float).2291233,(float).2177793,(
	    float).2075784,(float).1983358 };
    static float p6l[25]	/* was [5][5] */ = { (float).05613913,(float)
	    -.3019847,(float).6256387,(float)-.6324887,(float).3303194,(float)
	    .06843713,(float)-.3342119,(float).6302307,(float)-.5829747,(
	    float).27657,(float).08203343,(float)-.3644705,(float).627866,(
	    float)-.5335581,(float).2312756,(float).09675562,(float)-.3922489,
	    (float).6197133,(float)-.485747,(float).1934013,(float).1124069,(
	    float)-.4172349,(float).6069622,(float)-.4405326,(float).1618978 }
	    ;
    static float q6l[10] /* was [2][5] */ = { (float).9077644,(float).2535284,(
	    float).8626056,(float).22914,(float).8212018,(float).2078043,(
	    float).7831755,(float).1890848,(float).7481828,(float).1726085 };
    static float p6u[25]	/* was [5][5] */ = { (float)8.531865e-4,(float)
	    -.01616105,(float).06888533,(float)-.1109391,(float).07747182,(
	    float).00206076,(float)-.02558954,(float).08595213,(float)
	    -.1170228,(float).07094106,(float).004028559,(float)-.03697768,(
	    float).1021332,(float)-.1201436,(float).06412774,(float)
	    .006887946,(float)-.04994202,(float).1168451,(float)-.1207733,(
	    float).0574421,(float).01071895,(float)-.06404749,(float).1297386,
	    (float)-.1194208,(float).05112822 };
    static float q6u[10] /* was [2][5] */ = { (float)1.10127,(float).3858544,(
	    float)1.025431,(float).3337648,(float).9599102,(float).2918724,(
	    float).9025276,(float).2575336,(float).851747,(float).2289667 };

    /* Format strings */

    /* System generated locals */
    float r__1;
    double d__1, d__2;

    /* 
    Builtin functions 
    Int s_wsfe(cilist *), do_fio(Int *, char *, ftnlen), e_wsfe();
    */

    /* Local variables */
    static Int j, k;
    static float x;
    extern /* Subroutine */ int msgwrt_(Int *);
    static float eta2;

    /* Fortran I/O blocks 
    static cilist io___23 = { 0, 0, 0, fmt_1900, 0 };
    */


/* ----------------------------------------------------------------------- */
/* ! Evaluate rational approx. to selected spheriodial functions. */
/*                                                                        */
/*   This software is the subject of a User agreement and is confidential */
/*   in nature. It shall not be sold or otherwise made available or */
/*   disclosed to third parties. */
/* ----------------------------------------------------------------------- */
/*   SPHFN is a subroutine to evaluate rational approximations to */
/*   selected zero-order spheroidal functions, psi(c,eta), which are, in */
/*   a sense defined in VLA Scientific Memorandum No. 132, optimal for */
/*   gridding interferometer data.  The approximations are taken from */
/*   VLA Computer Memorandum No. 156.  The parameter c is related to the */
/*   support width, m, of the convoluting function according to */
/*   c=pi*m/2.  The parameter alpha determines a weight function in the */
/*   definition of the criterion by which the function is optimal. */
/*   SPHFN incorporates approximations to 25 of the spheroidal func- */
/*   tions, corresponding to 5 choices of m (4, 5, 6, 7, or 8 cells) */
/*   and 5 choices of the weighting exponent (0, 1/2, 1, 3/2, or 2). */
/*   Inputs: */
/*      IALF     I           Selects the weighting exponent, alpha */
/*                           (IALF = 1, 2, 3, 4, and 5 correspond to */
/*                           alpha = 0, 1/2, 1, 3/2, and 2, resp.). */
/*      IM       I           Selects the support width m, (=IM) and, */
/*                           correspondingly, the parameter c of the */
/*                           spheroidal function (only the choices 4, */
/*                           5, 6, 7, and 8 are allowed). */
/*      IFLAG    I           Chooses whether the spheroidal function */
/*                           itself, or its Fourier transform, is to be */
/*                           approximated.  The latter is appropriate */
/*                           for gridding, and the former for the u-v */
/*                           plane convolution.  The two differ by a */
/*                           factor (1-eta**2)**alpha.  IFLAG less than */
/*                           or equal to zero chooses the function */
/*                           appropriate for gridding, and IFLAG positive */
/*                           chooses its Fourier transform. */
/*      ETA      R           Eta, as the argument of the spheroidal */
/*                           function, is a variable which ranges from 0 */
/*                           at the center of the convoluting function to */
/*                           1 at its edge (also from 0 at the center of */
/*                           the gridding correction function to unity at */
/*                           the edge of the map). */
/*   Output: */
/*      PSI      R           function value which, on entry to the */
/*                           subroutine, was to have been computed. */
/*      IERR     I           Error return code: */
/*                              0  =>  No error */
/*                              1  =>  IALF out of range */
/*                              2  =>  IM out of range */
/*                              3  =>  ABS(ETA).GT.1 */
/*                             12  =>  IALF and IM both out of range */
/*                             13  =>  IALF and ETA both illegal */
/*                             23  =>  IM and ETA both illegal */
/*                            123  =>  IALF, IM, and ETA all illegal */
/* ----------------------------------------------------------------------- */
/*     INCLUDE 'INCS:DMSG.INC' */
/* ----------------------------------------------------------------------- */
    *ierr = 0;
/*                                       Check inputs. */
    if (*ialf < 1 || *ialf > 5) {
	*ierr = 1;
    }
    if (*im < 4 || *im > 8) {
	*ierr = *ierr * 10 + 2;
    }
    if (fabs(*eta) > (float)1.) {
	*ierr = *ierr * 10 + 3;
    }
    if (*ierr != 0) {
	goto L900;
    }
/*                                       So far, so good. */
/* Computing 2nd power */
    r__1 = *eta;
    eta2 = r__1 * r__1;
    j = *ialf;
    k = *im - 3;
/*                                       Branch on support width. */
    switch (k) {
	case 1:  goto L100;
	case 2:  goto L200;
	case 3:  goto L300;
	case 4:  goto L400;
	case 5:  goto L500;
    }
/*                                       Support width = 4 cells. */
L100:
    x = eta2 - (float)1.;
    *psi = (p4[j * 5 - 5] + x * (p4[j * 5 - 4] + x * (p4[j * 5 - 3] + x * (p4[
	    j * 5 - 2] + x * p4[j * 5 - 1])))) / (x * (q4[(j << 1) - 2] + x * 
	    q4[(j << 1) - 1]) + (float)1.);
    goto L800;
/*                                       Support width = 5 cells. */
L200:
    x = eta2 - (float)1.;
    *psi = (p5[j * 7 - 7] + x * (p5[j * 7 - 6] + x * (p5[j * 7 - 5] + x * (p5[
	    j * 7 - 4] + x * (p5[j * 7 - 3] + x * (p5[j * 7 - 2] + x * p5[j * 
	    7 - 1])))))) / (x * q5[j - 1] + (float)1.);
    goto L800;
/*                                       Support width = 6 cells. */
L300:
    if (fabs(*eta) > (float).75) {
	goto L350;
    }
    x = eta2 - (float).5625;
    *psi = (p6l[j * 5 - 5] + x * (p6l[j * 5 - 4] + x * (p6l[j * 5 - 3] + x * (
	    p6l[j * 5 - 2] + x * p6l[j * 5 - 1])))) / (x * (q6l[(j << 1) - 2] 
	    + x * q6l[(j << 1) - 1]) + (float)1.);
    goto L800;
L350:
    x = eta2 - (float)1.;
    *psi = (p6u[j * 5 - 5] + x * (p6u[j * 5 - 4] + x * (p6u[j * 5 - 3] + x * (
	    p6u[j * 5 - 2] + x * p6u[j * 5 - 1])))) / (x * (q6u[(j << 1) - 2] 
	    + x * q6u[(j << 1) - 1]) + (float)1.);
    goto L800;
/*                                       Support width = 7 cells. */
L400:
    if (fabs(*eta) > (float).775) {
	goto L450;
    }
    x = eta2 - (float).600625;
    *psi = (p7l[j * 5 - 5] + x * (p7l[j * 5 - 4] + x * (p7l[j * 5 - 3] + x * (
	    p7l[j * 5 - 2] + x * p7l[j * 5 - 1])))) / (x * (q7l[(j << 1) - 2] 
	    + x * q7l[(j << 1) - 1]) + (float)1.);
    goto L800;
L450:
    x = eta2 - (float)1.;
    *psi = (p7u[j * 5 - 5] + x * (p7u[j * 5 - 4] + x * (p7u[j * 5 - 3] + x * (
	    p7u[j * 5 - 2] + x * p7u[j * 5 - 1])))) / (x * (q7u[(j << 1) - 2] 
	    + x * q7u[(j << 1) - 1]) + (float)1.);
    goto L800;
/*                                       Support width = 8 cells. */
L500:
    if (fabs(*eta) > (float).775) {
	goto L550;
    }
    x = eta2 - (float).600625;
    *psi = (p8l[j * 6 - 6] + x * (p8l[j * 6 - 5] + x * (p8l[j * 6 - 4] + x * (
	    p8l[j * 6 - 3] + x * (p8l[j * 6 - 2] + x * p8l[j * 6 - 1]))))) / (
	    x * (q8l[(j << 1) - 2] + x * q8l[(j << 1) - 1]) + (float)1.);
    goto L800;
L550:
    x = eta2 - (float)1.;
    *psi = (p8u[j * 6 - 6] + x * (p8u[j * 6 - 5] + x * (p8u[j * 6 - 4] + x * (
	    p8u[j * 6 - 3] + x * (p8u[j * 6 - 2] + x * p8u[j * 6 - 1]))))) / (
	    x * (q8u[(j << 1) - 2] + x * q8u[(j << 1) - 1]) + (float)1.);
/*                                       Normal return. */
L800:
    if (*iflag > 0 || *ialf == 1 || *eta == (float)0.) {
	goto L999;
    }
    if (fabs(*eta) == (float)1.) {
	goto L850;
    }
    d__1 = (double) ((float)1. - eta2);
    d__2 = (double) alpha[*ialf - 1];
    *psi = pow(d__1, d__2) * *psi;
    goto L999;
L850:
    *psi = (float)0.;
    goto L999;
/*                                       Error exit. */
L900:
/*   
    io___23.ciunit = msgtxt;
     s_wsfe(&io___23);
    do_fio(&c__1, (char *)&(*ierr), (ftnlen)sizeof(Int));
    e_wsfe();
    msgwrt_(&c__8);
*/

L999:
    return 0;
/* -----------------------------------------------------------------------
 */
} /* sphfn */

#if defined(__cplusplus)
	}
#endif

float sphfn(Int ialf, Int im, float eta)
{
  Int ialphahold, imhold, iflaghold, ierrhold;
  ialphahold = ialf;
  imhold = im; 
  iflaghold = 0;
  ierrhold = 0;

  float psihold, etahold;
  psihold = 0; 
  etahold = eta;

  sphfn(&ialphahold, &imhold, &iflaghold, &etahold, &psihold, &ierrhold);
  return psihold;
}

} //# NAMESPACE CASACORE - END