File: MatrixMathLA.tcc

package info (click to toggle)
casacore 3.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 51,912 kB
  • sloc: cpp: 471,569; fortran: 16,372; ansic: 7,416; yacc: 4,714; lex: 2,346; sh: 1,865; python: 629; perl: 531; sed: 499; csh: 201; makefile: 32
file content (237 lines) | stat: -rw-r--r-- 6,278 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//# MatrixMath.cc: The Casacore linear algebra functions
//# Copyright (C) 1994,1995,1996,1998,2001,2002
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: casa-feedback@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA

#ifndef SCIMATH_MATRIXMATHLA_TCC
#define SCIMATH_MATRIXMATHLA_TCC

#include <casacore/scimath/Mathematics/MatrixMathLA.h>
#include <casacore/casa/Arrays/ArrayError.h>
#include <casacore/casa/Utilities/Assert.h>
#include <casacore/casa/Containers/Block.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

template<class T> 
Matrix<T> invert(const Matrix<T> &in){
  Matrix<T> out;
  T det;
  invert(out, det, in);
  return out;
}

template<class T> 
T determinate(const Matrix<T> &in){
  Matrix<T> out;
  T det;
  invert(out, det, in);
  return det;
}

template<class T> 
void invert(Matrix<T> &out, T& det, const Matrix<T> &in)
{
  AlwaysAssert(in.nrow() == in.ncolumn(), AipsError);
  
  Int m = in.nrow();
  Int lda = m; Int n = m;               // m, n, lda
  
  out.resize(in.shape());
  out = in;
  Bool deleteIt;
  T *a = out.getStorage(deleteIt);      // a
  
  Block<Int> ipiv(m);                   // ipiv
  Int info;                             // info

  getrf(&m, &n, a, &lda, ipiv.storage(), &info);

  if (info == 0) { // LU decomposition worked! 
    // Calculate the determinate
    // It is just the product of the diagonal elements
    det = out(0,0);
    for (Int i = 1; i < n; i++)
      det *= out(i,i);

    // Calculate the inverse using back substitution
    Int lwork = 32 * n; // Lazy - we should really get this from ilaenv
    Block<T> work(lwork);
    getri(&m, a, &lda, ipiv.storage(), work.storage(), &lwork, &info);
  }
  out.putStorage(a, deleteIt); 
  AlwaysAssert(info >= 0, AipsError); // illegal argument to *getri or *getrf
  if (info > 0) {
    out.resize(0,0);
  }
}


template<class T> Matrix<T> invertSymPosDef(const Matrix<T> &in)
{
  Int i, j, k, n;
  n = in.nrow();

  Vector<T> diag(n);
  Vector<T> b(n);
  Matrix<T> tmp(n,n);
  Matrix<T> out(n,n);

  for(i = 0; i < n; i++) {
    for(j = 0; j < n; j++) {
      tmp(i,j) = in(i,j);
    }
  }

  // Cholesky decomposition: A = L*trans(L)
  CholeskyDecomp(tmp, diag);

  // Solve inverse of A by forward and backward substitution.  The right
  // hand side is a unit matrix, the solution is thus the inverse of A.
  for(j = 0; j < n; j++) {
    // one column at a time
    for(k = 0; k < n; k++) {
      b(k) = T(0.0);
    }
    b(j) = T(1.0);
    CholeskySolve(tmp, diag, b, b);
    for(k = 0; k < n; k++) {
      out(k,j) = b(k);
    }
  }
  return out;
}


template<class T> void invertSymPosDef(Matrix<T> & out, T& determinate, 
				       const Matrix<T> &in)
{
  // Resize out to match in
  out.resize(in.shape());

  Int i, j, k, n;
  n = in.nrow();

  Vector<T> diag(n);
  Vector<T> b(n);
  Matrix<T> tmp(n,n);

  for(i = 0; i < n; i++) {
    for(j = 0; j < n; j++) {
      tmp(i,j) = in(i,j);
    }
  }

  // Cholesky decomposition: A = L*trans(L)
  CholeskyDecomp(tmp, diag);
  

  // Is the following correct?
  determinate = diag(0)*diag(0);
  for(k = 1; k < n; k++) determinate = determinate*diag(k)*diag(k);

  // Solve inverse of A by forward and backward substitution.  The right
  // hand side is a unit matrix, the solution is thus the inverse of A.
  for(j = 0; j < n; j++) {
    // one column at a time
    for(k = 0; k < n; k++) {
      b(k) = T(0.0);
    }
    b(j) = T(1.0);
    CholeskySolve(tmp, diag, b, b);
    for(k = 0; k < n; k++) {
      out(k,j) = b(k);
    }
  }
}

template<class T> void CholeskyDecomp(Matrix<T> &A, Vector<T> &diag)
{
  // This function performs Cholesky decomposition.
  // A is a positive-definite symmetric matrix. Only the upper triangle of
  // A is needed on input. On output, the lower triangle of A contains the
  // Cholesky factor L.  The diagonal elements of L are returned in vector
  // diag.

  Int i, j, k, n;
  T sum;
  n = A.nrow();
  // Cholesky decompose A = L*trans(L)
  for(i = 0; i < n; i++) {
    for(j = i; j < n; j++) {
      sum = A(i,j);
      for(k = i-1; k >=0; k--) {
	sum = sum - A(i,k)*A(j,k);
      }
      if(i == j) {
	if(sum <= T(0.0)) {
	  throw(AipsError("CholeskyDecomp: Matrix is"
			  "not positive definite"));
	}
	diag(i) = sqrt(sum);
      } else {
	A(j,i) = sum/diag(i);
      }
    }
  }
}

template<class T> void CholeskySolve(Matrix<T> &A, Vector<T> &diag, 
				     Vector<T> &b, Vector<T> &x)
{
  // Solve linear equation A*x = b, where A positive-definite symmetric.
  // On input, A contains Cholesky factor L in its low triangle except the
  // diagonal elements which are in vector diag.  On return x contains the
  // solution.  b and x can be the same vector to save memory space.

  Int i, k, n;
  T sum;

  n = A.nrow();

  // Ensure solution vector has same length as input vector
  x.resize(b.shape());
        
  // solve by forward and backward substitution.  
  // L*y = b
  for(i = 0; i < n; i++) {
    sum = b(i);
    for(k = i-1; k >=0; k--) {
      sum = sum - A(i,k)*x(k);
    }
    x(i) = sum/diag(i);
  }
  // trans(L)*x = y
  for(i = n-1; i >= 0; i--) {
    sum = x(i);
    for(k = i+1; k < n; k++) {
	sum = sum - A(k,i)*x(k);
      }
    x(i) = sum/diag(i);
  }
}

} //# NAMESPACE CASACORE - END


#endif