1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
//# MatrixMath.cc: The Casacore linear algebra functions
//# Copyright (C) 1994,1995,1996,1998,2001,2002
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
#ifndef SCIMATH_MATRIXMATHLA_TCC
#define SCIMATH_MATRIXMATHLA_TCC
#include <casacore/scimath/Mathematics/MatrixMathLA.h>
#include <casacore/casa/Arrays/ArrayError.h>
#include <casacore/casa/Utilities/Assert.h>
#include <casacore/casa/Containers/Block.h>
namespace casacore { //# NAMESPACE CASACORE - BEGIN
template<class T>
Matrix<T> invert(const Matrix<T> &in){
Matrix<T> out;
T det;
invert(out, det, in);
return out;
}
template<class T>
T determinate(const Matrix<T> &in){
Matrix<T> out;
T det;
invert(out, det, in);
return det;
}
template<class T>
void invert(Matrix<T> &out, T& det, const Matrix<T> &in)
{
AlwaysAssert(in.nrow() == in.ncolumn(), AipsError);
Int m = in.nrow();
Int lda = m; Int n = m; // m, n, lda
out.resize(in.shape());
out = in;
Bool deleteIt;
T *a = out.getStorage(deleteIt); // a
Block<Int> ipiv(m); // ipiv
Int info; // info
getrf(&m, &n, a, &lda, ipiv.storage(), &info);
if (info == 0) { // LU decomposition worked!
// Calculate the determinate
// It is just the product of the diagonal elements
det = out(0,0);
for (Int i = 1; i < n; i++)
det *= out(i,i);
// Calculate the inverse using back substitution
Int lwork = 32 * n; // Lazy - we should really get this from ilaenv
Block<T> work(lwork);
getri(&m, a, &lda, ipiv.storage(), work.storage(), &lwork, &info);
}
out.putStorage(a, deleteIt);
AlwaysAssert(info >= 0, AipsError); // illegal argument to *getri or *getrf
if (info > 0) {
out.resize(0,0);
}
}
template<class T> Matrix<T> invertSymPosDef(const Matrix<T> &in)
{
Int i, j, k, n;
n = in.nrow();
Vector<T> diag(n);
Vector<T> b(n);
Matrix<T> tmp(n,n);
Matrix<T> out(n,n);
for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {
tmp(i,j) = in(i,j);
}
}
// Cholesky decomposition: A = L*trans(L)
CholeskyDecomp(tmp, diag);
// Solve inverse of A by forward and backward substitution. The right
// hand side is a unit matrix, the solution is thus the inverse of A.
for(j = 0; j < n; j++) {
// one column at a time
for(k = 0; k < n; k++) {
b(k) = T(0.0);
}
b(j) = T(1.0);
CholeskySolve(tmp, diag, b, b);
for(k = 0; k < n; k++) {
out(k,j) = b(k);
}
}
return out;
}
template<class T> void invertSymPosDef(Matrix<T> & out, T& determinate,
const Matrix<T> &in)
{
// Resize out to match in
out.resize(in.shape());
Int i, j, k, n;
n = in.nrow();
Vector<T> diag(n);
Vector<T> b(n);
Matrix<T> tmp(n,n);
for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {
tmp(i,j) = in(i,j);
}
}
// Cholesky decomposition: A = L*trans(L)
CholeskyDecomp(tmp, diag);
// Is the following correct?
determinate = diag(0)*diag(0);
for(k = 1; k < n; k++) determinate = determinate*diag(k)*diag(k);
// Solve inverse of A by forward and backward substitution. The right
// hand side is a unit matrix, the solution is thus the inverse of A.
for(j = 0; j < n; j++) {
// one column at a time
for(k = 0; k < n; k++) {
b(k) = T(0.0);
}
b(j) = T(1.0);
CholeskySolve(tmp, diag, b, b);
for(k = 0; k < n; k++) {
out(k,j) = b(k);
}
}
}
template<class T> void CholeskyDecomp(Matrix<T> &A, Vector<T> &diag)
{
// This function performs Cholesky decomposition.
// A is a positive-definite symmetric matrix. Only the upper triangle of
// A is needed on input. On output, the lower triangle of A contains the
// Cholesky factor L. The diagonal elements of L are returned in vector
// diag.
Int i, j, k, n;
T sum;
n = A.nrow();
// Cholesky decompose A = L*trans(L)
for(i = 0; i < n; i++) {
for(j = i; j < n; j++) {
sum = A(i,j);
for(k = i-1; k >=0; k--) {
sum = sum - A(i,k)*A(j,k);
}
if(i == j) {
if(sum <= T(0.0)) {
throw(AipsError("CholeskyDecomp: Matrix is"
"not positive definite"));
}
diag(i) = sqrt(sum);
} else {
A(j,i) = sum/diag(i);
}
}
}
}
template<class T> void CholeskySolve(Matrix<T> &A, Vector<T> &diag,
Vector<T> &b, Vector<T> &x)
{
// Solve linear equation A*x = b, where A positive-definite symmetric.
// On input, A contains Cholesky factor L in its low triangle except the
// diagonal elements which are in vector diag. On return x contains the
// solution. b and x can be the same vector to save memory space.
Int i, k, n;
T sum;
n = A.nrow();
// Ensure solution vector has same length as input vector
x.resize(b.shape());
// solve by forward and backward substitution.
// L*y = b
for(i = 0; i < n; i++) {
sum = b(i);
for(k = i-1; k >=0; k--) {
sum = sum - A(i,k)*x(k);
}
x(i) = sum/diag(i);
}
// trans(L)*x = y
for(i = n-1; i >= 0; i--) {
sum = x(i);
for(k = i+1; k < n; k++) {
sum = sum - A(k,i)*x(k);
}
x(i) = sum/diag(i);
}
}
} //# NAMESPACE CASACORE - END
#endif
|