1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
//# MatrixSolver.cc: Abstract base class for solvers of AX=B
//# Copyright (C) 1994,1995,1999,2001,2003
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
#include <casacore/casa/aips.h>
#include <casacore/casa/Exceptions.h>
#include <casacore/scimath/Mathematics/MatrixSolver.h>
#include <casacore/casa/Arrays/MatrixMath.h>
#include <casacore/casa/Logging/LogSink.h>
#include <casacore/casa/Logging/LogMessage.h>
#include <casacore/casa/sstream.h>
namespace casacore { //# NAMESPACE CASACORE - BEGIN
MatrixSolver::MatrixSolver():SolTolerance(0.0), MaxIterations(0), solved(False),
gain(1.0){}
MatrixSolver::MatrixSolver(const MatrixSolver & other) {
AMatrix.reference((Matrix<FType> &)other.AMatrix);
BVector.reference((Vector<FType> &)other.BVector);
RVector.reference((Vector<FType> &)other.RVector);
XVector.reference((Vector<FType> &)other.XVector);
BNorm=other.BNorm;
RNorm=other.RNorm;
solved=other.solved;
MaxIterations=other.MaxIterations;
SolTolerance=other.SolTolerance;
gain=other.gain;
}
MatrixSolver::MatrixSolver(const Matrix<FType> & amatrix,
const Vector<FType> & bvector)
: SolTolerance(0.0), MaxIterations(0), solved(False), gain(1.0) {
AMatrix.reference((Matrix<FType> &)amatrix);
BVector.reference((Vector<FType> &)bvector);
XVector.resize(AMatrix.shape()(1));
RVector.resize(bvector.shape());
BNorm=norm(BVector);
RNorm=BNorm;
}
void MatrixSolver::setAB(const Matrix<FType> & amatrix,
const Vector<FType> & bvector)
{
AMatrix.reference((Matrix<FType> &)amatrix);
BVector.reference((Vector<FType> &)bvector);
XVector.resize(AMatrix.shape()(1));
RVector.resize(bvector.shape());
BNorm=norm(BVector);
RNorm=BNorm;
}
void MatrixSolver::setX(const Vector<FType> & xvector)
{
XVector.reference((Vector<FType> &)xvector);
}
MatrixSolver & MatrixSolver::operator=(const MatrixSolver & other) {
if (this==&other) return *this;
AMatrix.reference((Matrix<FType> &)other.AMatrix);
BVector.reference((Vector<FType> &)other.BVector);
RVector.reference((Vector<FType> &)other.RVector);
XVector.reference((Vector<FType> &)other.XVector);
BNorm=other.BNorm;
RNorm=other.RNorm;
solved=other.solved;
MaxIterations=other.MaxIterations;
SolTolerance=other.SolTolerance;
gain=other.gain;
return *this;
}
// Virtual destructor
MatrixSolver::~MatrixSolver() {}
// Virtual solve method
Bool MatrixSolver::solve() {return False;}
// Returning the residual vector is a general operation.
const Vector<FType> & MatrixSolver::getResidual() {
// Calculate residual vector
RVector=BVector-product(AMatrix, XVector);
// Calculate norm of RVector
RNorm = norm(RVector);
return RVector;
}
const Vector<FType> & MatrixSolver::getSolution() {
return XVector;
}
// Determine if the solution has small enough residual vector.
Bool MatrixSolver::accurateSolution() {
LogMessage message(LogOrigin("MatrixSolver", "accurateSolution"));
// Calculate norm of RVector assuming that RVector is current
RNorm = norm(RVector);
// Now determine if the residual vector norm is less than the
// Solution tolerance times the original BVector norm.
ostringstream o;o<<"MatrixSolver: Norms of initial and residual vectors "<<
BNorm<<", "<<RNorm;
message.message(o);
logSink().post(message);
if (RNorm<(SolTolerance*BNorm)) {
setSolved(True);
}
else {
setSolved(False);
}
return Solved();
}
} //# NAMESPACE CASACORE - END
|