1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
//# NNLSMatrixSolver.h: the base class for NNLS solvers of AX=B
//# Copyright (C) 1994,1995,1999
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
#ifndef SCIMATH_NNLSMATRIXSOLVER_H
#define SCIMATH_NNLSMATRIXSOLVER_H
#include <casacore/casa/aips.h>
#include <casacore/scimath/Mathematics/MatrixSolver.h>
namespace casacore { //# NAMESPACE CASACORE - BEGIN
//<summary>
// NNLSMatrixSolver.h: the base class for NNLS solvers of linear equations AX=B
//</summary>
// <use visibility=local>
// <reviewed reviewer="" date="",tests="" demos="">
// </reviewed>
// <prerequisite>
// <li> Matrix, Vector
// </prerequisite>
//
// <etymology>
// NNLS stands for Projection Onto Convex Sets. The idea is very simple: to
// find a solution to AX=B simply take the residual vector B-AX and operate
// on it to keep only the bits that obey some constraint e.g. positivity.
// Add this part to the current estimate of the solution vector and iterate.
// Both CLEAN and Gerchberg-Saxon are NNLS algorithms. If the projection
// Operators are convex then the process is guaranteed to converge (Youla, 1970).
// </etymology>
//
// <synopsis>
// NNLSMatrixSolver is a complete class. To use it, simply add Operators
// <ol>
// <li> I do not know how to do this yet but it should look something like
// <src>NNLSMatrixSolver NNLS(amatrix, bvector);NNLS.addOperator(foo);</src>
// </ol>
// </synopsis>
//
// <todo asof="">
// <li> Add list of operators
// </todo>
class NNLSMatrixSolver : public MatrixSolver {
public:
// Default Constructor
NNLSMatrixSolver();
// Copy Constructor
NNLSMatrixSolver(const NNLSMatrixSolver & other);
// Create a NNLSMatrixSolver from a matrix A and a Vector B
// <note role=warning> A and B are accessed by reference, so don't
// modify them during the lifetime of the NNLSMatrixSolver </note>
NNLSMatrixSolver(const Matrix<FType> & A, const Vector<FType> & B);
// Destructor
~NNLSMatrixSolver();
// Solve for the X vector.
Bool solve();
protected:
private:
};
} //# NAMESPACE CASACORE - END
#endif
|