1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
//# SparseDiff.h: An automatic differentiating class for functions
//# Copyright (C) 2007,2008
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
#ifndef SCIMATH_SPARSEDIFF_H
#define SCIMATH_SPARSEDIFF_H
//# Includes
#include <casacore/casa/aips.h>
#include <casacore/scimath/Mathematics/AutoDiff.h>
#include <casacore/scimath/Mathematics/SparseDiffRep.h>
#include <casacore/casa/vector.h>
#include <utility>
// Using
using std::pair;
namespace casacore { //# NAMESPACE CASACORE - BEGIN
//# Forward declarations
template <class T> class SparseDiff;
// <summary>
// Class that computes partial derivatives by automatic differentiation.
// </summary>
//
// <use visibility=export>
//
// <reviewed reviewer="UNKNOWN" date="" tests="tSparseDiff.cc" demos="dSparseDiff.cc">
// </reviewed>
//
// <prerequisite>
// <li> <linkto class=AutoDiff>AutoDiff</linkto> class
// </prerequisite>
//
// <etymology>
// Class that computes partial derivatives for some parameters by automatic
// differentiation, thus SparseDiff.
// </etymology>
//
// <synopsis>
// Class that computes partial derivatives by automatic differentiation.
// It does this by storing the value of a function and the values of its first
// derivatives with respect to some of its independent parameters.
// When a mathematical
// operation is applied to a SparseDiff object, the derivative values of the
// resulting new object are computed according to the chain rules
// of differentiation. SparseDiff operates like the
// <linkto class=AutoDiff>AutoDiff</linkto> class, but only determines the
// derivatives with respect to the actual dependent variables.
//
// Suppose we have a function f(x0,x1,...,xn) and its differential is
// <srcblock>
// df = (df/dx0)*dx0 + (df/dx1)*dx1 + ... + (df/dxn)*dxn
// </srcblock>
// We can build a class that has the value of the function,
// f(x0,x1,...,xn), and the values of the derivatives, (df/dx0), (df/dx1),
// ..., (df/dxn) at (x0,x1,...,xn), as class members.
//
// Now if we have another function, g(x0,x1,...,xn) and its differential is
// dg = (dg/dx0)*dx0 + (dg/dx1)*dx1 + ... + (dg/dxn)*dxn,
// since
// <srcblock>
// d(f+g) = df + dg,
// d(f*g) = g*df + f*dg,
// d(f/g) = df/g - fdg/g^2,
// dsin(f) = cos(f)df,
// ...,
// </srcblock>
// we can calculate
// <srcblock>
// d(f+g), d(f*g), ...,
// </srcblock> based on our information on
// <srcblock>
// df/dx0, df/dx1, ..., dg/dx0, dg/dx1, ..., dg/dxn.
// </srcblock>
// All we need to do is to define the operators and derivatives of common
// mathematical functions.
//
// To be able to use the class as an automatic differentiator of a function
// object, we need a templated function object, i.e. an object with:
// <ul>
// <li> a <src> template <class T> T operator()(const T)</src>
// <li> or multiple variable input like:
// <src> template <class T> T operator()(const Vector<T> &)</src>
// <li> all dependent variables used in the calculation of the function
// value should have been typed with T.
// </ul>
// A simple example of such a function object could be:
// <srcblock>
// template <class T> f {
// public:
// T operator()(const T &x, const T &a, const T &b) {
// return a*b*x; }
// };
// // Instantiate the following versions:
// template class f<Double>;
// template class f<SparseDiff<Double> >;
// </srcblock>
// A call with values will produce the function value:
// <srcblock>
// cout << f(7.0, 2.0, 3.0) << endl;
// // will produce the value at x=7 for a=2; b=3:
// 42
// // But a call indicating that we want derivatives to a and b:
// cout << f(SparseDiff<Double>(7.0), SparseDiff<Double>(2.0, 0),
// SparseDiff<Double>(3.0, 1)) << endl;
// // will produce the value at x=7 for a=2; b=3:
// // and the partial derivatives wrt a and b at x=7:
// (42, [21, 14])
// // The following will calculate the derivate wrt x:
// cout << f(SparseDiff<Double>(7.0, 0), SparseDiff<Double>(2.0),
// SparseDiff<Double>(3.0)) << endl;
// (42,[6])
// </srcblock>
// Note that in practice constants may be given as Double constants.
// In actual practice, there are a few rules to obey for the structure of
// the function object if you want to use the function object and its
// derivatives in least squares fitting procedures in the Fitting
// module. The major one is to view the function object having 'fixed' and
// 'variable' parameters. I.e., rather than viewing the function as
// depending on parameters <em>a, b, x</em> (<src>f(a,b,x)</src>), the
// function is considered to be <src>f(x; a,b)</src>, where <em>a, b</em>
// are 'fixed' parameters, and <em>x</em> a variable parameter.
// Fixed parameters should be contained in a
// <linkto class=FunctionParam>FunctionParam</linkto> container object;
// while the variable parameter(s) are given in the function
// <src>operator()</src>. See <linkto class=Function>Function</linkto> class
// for details.
//
// A Gaussian spectral profile would in general have the center frequency,
// the width and the amplitude as fixed parameters, and the frequency as
// a variable. Given a spectrum, you would solve for the fixed parameters,
// given spectrum values. However, in other cases the role of the
// parameters could be reversed. An example could be a whole stack of
// observed (in the laboratory) spectra at different temperatures at
// one frequency. In that case the width would be the variable parameter,
// and the frequency one of the fixed (and to be solved for)parameters.
//
// Since the calculation of the derivatives is done with simple overloading,
// the calculation of second (and higher) derivatives is easy. It should be
// noted that higher deivatives are inefficient in the current incarnation
// (there is no knowledge e.g. about symmetry in the Jacobian). However,
// it is a very good way to get the correct answers of the derivatives. In
// practice actual production code will be better off with specialization
// of the <src>f<SparseDiff<> ></src> implementation.
//
// The <src>SparseDiff</src> class is the class the user communicates with.
// Alias classes (<linkto class=SparseDiffA>SparseDiffA</linkto> and
// <linkto class=SparseDiffA>SparseDiffX</linkto>) exist
// to make it possible to have different incarnations of a templated
// method (e.g. a generic one and a specialized one). See the
// <src>dSparseDiff</src> demo for an example of its use.
//
// All operators and functions are declared in <linkto file=SparseDiffMath.h>
// SparseDiffMath</linkto>. The output operator in
// <linkto file=SparseDiffIO.h>SparseDiffIO</linkto>.
// The actual structure of the
// data block used by <src>SparseDiff</src> is described in
// <linkto class=SparseDiffRep>SparseDiffRep</linkto>.
//
// A SparseDiff can be constructed from an AutoDiff.
// <em>toAutoDiff(n)</em> can convert it to an AutoDiff.
// </synopsis>
//
// <example>
// <srcblock>
// // First a simple example.
// // We have a function of the form f(x,y,z); and want to know the
// // value of the function for x=10; y=20; z=30; and for
// // the derivatives at those points.
// // Specify the values; and indicate the parameter dependence:
// SparseDiff<Double> x(10.0, 0);
// SparseDiff<Double> y(20.0, 1);
// SparseDiff<Double> z(30.0, 2);
// // The result will be:
// SparseDiff<Double> result = x*y + sin(z);
// cout << result.value() << endl;
// // 199.012
// cout << result.derivatives() << endl;
// // [20, 10, 0.154251]
// // Note: sin(30) = -0.988; cos(30) = 0.154251;
// </srcblock>
//
// See for an extensive example the demo program dSparseDiff. It is
// based on the example given above, and shows also the use of second
// derivatives (which is just using <src>SparseDiff<SparseDiff<Double> ></src>
// as template argument).
// <srcblock>
// // The function, with fixed parameters a,b:
// template <class T> class f {
// public:
// T operator()(const T& x) { return a_p*a_p*a_p*b_p*b_p*x; }
// void set(const T& a, const T& b) { a_p = a; b_p = b; }
// private:
// T a_p;
// T b_p;
// };
// // Call it with different template arguments:
// Double a0(2), b0(3), x0(7);
// f<Double> f0; f0.set(a0, b0);
// cout << "Value: " << f0(x0) << endl;
//
// SparseDiff<Double> a1(2,0), b1(3,1), x1(7);
// f<SparseDiff<Double> > f1; f1.set(a1, b1);
// cout << "Diff a,b: " << f1(x1) << endl;
//
// SparseDiff<Double> a2(2), b2(3), x2(7,0);
// f<SparseDiff<Double> > f2; f2.set(a2, b2);
// cout << "Diff x: " << f2(x2) << endl;
//
// SparseDiff<SparseDiff<Double> > a3(SparseDiff<Double>(2,0),0),
// b3(SparseDiff<Double>(3,1),1), x3(SparseDiff<Double>(7));
// f<SparseDiff<SparseDiff<Double> > > f3; f3.set(a3, b3);
// cout << "Diff2 a,b: " << f3(x3) << endl;
//
// SparseDiff<SparseDiff<Double> > a4(SparseDiff<Double>(2)),
// b4(SparseDiff<Double>(3)),
// x4(SparseDiff<Double>(7,0),0);
// f<SparseDiff<SparseDiff<Double> > > f4; f4.set(a4, b4);
// cout << "Diff2 x: " << f4(x4) << endl;
//
// // Result will be:
// // Value: 504
// // Diff a,b: (504, [756, 336])
// // Diff x: (504, [72])
// // Diff2 a,b: ((504, [756, 336]), [(756, [756, 504]), (336, [504, 112])])
// // Diff2 x: ((504, [72]), [(72, [0])])
//
// // It needed the template instantiations definitions:
// template class f<Double>;
// template class f<SparseDiff<Double> >;
// template class f<SparseDiff<SparseDiff<Double> > >;
// </srcblock>
// </example>
//
// <motivation>
// The creation of the class was motivated by least-squares non-linear fits
// in cases where each individual condition equation depends only on a
// fraction of the fixed parameters (e.g. self-calibration where only pairs
// of antennas are present per equation), and hence only a few
// partial derivatives of a fitted function are needed. It would be tedious
// to create functionals for all partial derivatives of a function.
// </motivation>
//
// <templating arg=T>
// <li> any class that has the standard mathematical and comparison
// operators and functions defined.
// </templating>
//
// <todo asof="2007/11/27">
// <li> Nothing I know of.
// </todo>
template <class T> class SparseDiff {
public:
//# Typedefs
typedef T value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* iterator;
typedef const value_type* const_iterator;
//# Constructors
// Construct a constant with a value of zero. Zero derivatives.
SparseDiff();
// Construct a constant with a value of v. Zero derivatives.
SparseDiff(const T &v);
// A function f(x0,x1,...,xn,...) with a value of v. The
// nth derivative is one, and all other derivatives are zero.
SparseDiff(const T &v, const uInt n);
// A function f(x0,x1,...,xn,...) with a value of v. The
// nth derivative is der, and all other derivatives are zero.
SparseDiff(const T &v, const uInt n, const T &der);
// Construct from an AutoDiff
SparseDiff(const AutoDiff<T> &other);
// Construct one from another (deep copy)
SparseDiff(const SparseDiff<T> &other);
// Destructor
~SparseDiff();
// Assignment operator. Assign a constant to variable.
SparseDiff<T> &operator=(const T &v);
// Assignment operator. Add a gradient to variable.
SparseDiff<T> &operator=(const pair<uInt, T> &der);
// Assignment operator. Assign gradients to variable.
SparseDiff<T> &operator=(const vector<pair<uInt, T> > &der);
// Assign from an Autodiff
SparseDiff<T> &operator=(const AutoDiff<T> &other);
// Assign one to another (deep copy)
SparseDiff<T> &operator=(const SparseDiff<T> &other);
// Assignment operators
// <group>
void operator*=(const SparseDiff<T> &other);
void operator/=(const SparseDiff<T> &other);
void operator+=(const SparseDiff<T> &other);
void operator-=(const SparseDiff<T> &other);
void operator*=(const T other) { rep_p->operator*=(other);
value() *= other; }
void operator/=(const T other) { rep_p->operator/=(other);
value() /= other; }
void operator+=(const T other) { value() += other; }
void operator-=(const T other) { value() -= other; }
// </group>
// Convert to an AutoDiff of length <em>n</em>
AutoDiff<T> toAutoDiff(uInt n) const;
// Returns the pointer to the structure of value and derivatives.
// <group>
SparseDiffRep<T> *theRep() { return rep_p; }
const SparseDiffRep<T> *theRep() const { return rep_p; }
// </group>
// Returns the value of the function
// <group>
T &value() { return rep_p->val_p; }
const T &value() const { return rep_p->val_p; }
// </group>
// Returns a vector of the derivatives of a SparseDiff
// <group>
vector<pair<uInt, T> > &derivatives() const;
void derivatives(vector<pair<uInt, T> > &res) const;
const vector<pair<uInt, T> > &grad() const { return rep_p->grad_p; }
vector<pair<uInt, T> > &grad() { return rep_p->grad_p; }
// </group>
// Returns a specific derivative. No check for a valid which.
// <group>
pair<uInt, T> &derivative(uInt which) { return rep_p->grad_p[which]; }
const pair<uInt, T> &derivative(uInt which) const {
return rep_p->grad_p[which]; }
// </group>
// Return total number of derivatives
uInt nDerivatives() const { return rep_p->grad_p.size(); }
// Is it a constant, i.e., with zero derivatives?
Bool isConstant() const { return rep_p->grad_p.empty(); }
// Sort criterium
static Bool ltSort(pair<uInt, T> &lhs, pair<uInt, T> &rhs);
// Sort derivative list; cater for doubles and zeroes
void sort();
private:
//# Data
// Value representation
SparseDiffRep<T> *rep_p;
};
} //# NAMESPACE CASACORE - END
#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/Mathematics/SparseDiff.tcc>
#endif //# CASACORE_NO_AUTO_TEMPLATES
#endif
|