File: SparseDiff.h

package info (click to toggle)
casacore 3.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 51,912 kB
  • sloc: cpp: 471,569; fortran: 16,372; ansic: 7,416; yacc: 4,714; lex: 2,346; sh: 1,865; python: 629; perl: 531; sed: 499; csh: 201; makefile: 32
file content (393 lines) | stat: -rw-r--r-- 15,489 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//# SparseDiff.h: An automatic differentiating class for functions
//# Copyright (C) 2007,2008
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: casa-feedback@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA

#ifndef SCIMATH_SPARSEDIFF_H
#define SCIMATH_SPARSEDIFF_H

//# Includes
#include <casacore/casa/aips.h>
#include <casacore/scimath/Mathematics/AutoDiff.h>
#include <casacore/scimath/Mathematics/SparseDiffRep.h>
#include <casacore/casa/vector.h>
#include <utility>

// Using
using std::pair;

namespace casacore { //# NAMESPACE CASACORE - BEGIN

  //# Forward declarations
  template <class T> class SparseDiff;

  // <summary>
  // Class that computes partial derivatives by automatic differentiation.
  // </summary>
  //
  // <use visibility=export>
  //
  // <reviewed reviewer="UNKNOWN" date="" tests="tSparseDiff.cc" demos="dSparseDiff.cc">
  // </reviewed>
  //
  // <prerequisite>
  // <li>  <linkto class=AutoDiff>AutoDiff</linkto> class
  // </prerequisite>
  //
  // <etymology>
  // Class that computes partial derivatives for some parameters by automatic
  // differentiation, thus SparseDiff.
  // </etymology>
  //
  // <synopsis>
  // Class that computes partial derivatives by automatic differentiation.
  // It does this by storing the value of a function and the values of its first 
  // derivatives with respect to some of its independent parameters. 
  // When a mathematical
  // operation is applied to a SparseDiff object, the derivative values of the 
  // resulting new object are computed according to the chain rules 
  // of differentiation. SparseDiff operates like the 
  // <linkto class=AutoDiff>AutoDiff</linkto> class, but only determines the
  // derivatives with respect to the actual dependent variables. 
  //
  // Suppose we have a function f(x0,x1,...,xn) and its differential is
  // <srcblock> 
  // df = (df/dx0)*dx0 + (df/dx1)*dx1 + ... + (df/dxn)*dxn
  // </srcblock> 
  // We can build a class that has the value of the function, 
  // f(x0,x1,...,xn), and the values of the derivatives, (df/dx0), (df/dx1), 
  // ..., (df/dxn) at (x0,x1,...,xn), as class members. 
  //
  // Now if we have another function, g(x0,x1,...,xn) and its differential is
  // dg = (dg/dx0)*dx0 + (dg/dx1)*dx1 + ... + (dg/dxn)*dxn,
  // since 
  // <srcblock> 
  // d(f+g) = df + dg, 
  // d(f*g) = g*df + f*dg, 
  // d(f/g) = df/g - fdg/g^2,
  // dsin(f) = cos(f)df, 
  // ...,
  // </srcblock> 
  // we can calculate
  // <srcblock>  
  // d(f+g), d(f*g), ..., 
  // </srcblock>  based on our information on
  // <srcblock>  
  // df/dx0, df/dx1, ..., dg/dx0, dg/dx1, ..., dg/dxn. 
  // </srcblock>  
  // All we need to do is to define the operators and derivatives of common 
  // mathematical functions.
  //
  // To be able to use the class as an automatic differentiator of a function
  // object, we need a templated function object, i.e. an object with:
  // <ul>
  // <li> a <src> template <class T> T operator()(const T)</src>
  // <li> or multiple variable input like: 
  //		<src> template <class T> T operator()(const Vector<T> &)</src>
  // <li> all dependent variables  used in the calculation of the function
  //	value should have been typed with T.
  // </ul>
  // A simple example of such a function object could be:
  // <srcblock>
  //	template <class T> f {
  //	public:
  //	  T operator()(const T &x, const T &a, const T &b) {
  //	  	return a*b*x; }
  // 	};
  //      // Instantiate the following versions:
  //	template class f<Double>;
  //	template class f<SparseDiff<Double> >;
  // </srcblock>
  // A call with values will produce the function value:
  // <srcblock>
  //	cout << f(7.0, 2.0, 3.0) << endl;
  //	// will produce the value at x=7 for a=2; b=3:
  //	42
  //	// But a call indicating that we want derivatives to a and b:
  //	cout << f(SparseDiff<Double>(7.0), SparseDiff<Double>(2.0, 0),
  //		  SparseDiff<Double>(3.0, 1)) << endl;
  //	// will produce the value at x=7 for a=2; b=3:
  //	// and the partial derivatives wrt a and b at x=7:
  //	(42, [21, 14])
  //	// The following will calculate the derivate wrt x:
  //	cout << f(SparseDiff<Double>(7.0, 0), SparseDiff<Double>(2.0),
  //		  SparseDiff<Double>(3.0)) << endl;
  //	(42,[6])
  // </srcblock>
  // Note that in practice constants may be given as Double constants.
  // In actual practice, there are a few rules to obey for the structure of
  // the function object if you want to use the function object and its
  // derivatives in least squares fitting procedures in the Fitting
  // module. The major one is to view the function object having 'fixed' and
  // 'variable' parameters. I.e., rather than viewing the function as
  // depending on parameters <em>a, b, x</em> (<src>f(a,b,x)</src>), the 
  // function is considered to be <src>f(x; a,b)</src>, where <em>a, b</em> 
  // are 'fixed' parameters, and <em>x</em> a variable parameter.
  // Fixed parameters should be contained in a 
  // <linkto class=FunctionParam>FunctionParam</linkto> container object;
  // while the variable parameter(s) are given in the function
  // <src>operator()</src>. See <linkto class=Function>Function</linkto> class
  // for details.
  //
  // A Gaussian spectral profile would in general have the center frequency,
  // the width and the amplitude as fixed parameters, and the frequency as
  // a variable. Given a spectrum, you would solve for the fixed parameters,
  // given spectrum values. However, in other cases the role of the
  // parameters could be reversed. An example could be a whole stack of
  // observed (in the laboratory) spectra at different temperatures at
  // one frequency. In that case the width would be the variable parameter,
  // and the frequency one of the fixed (and to be solved for)parameters. 
  //
  // Since the calculation of the derivatives is done with simple overloading, 
  // the calculation of second (and higher) derivatives is easy. It should be
  // noted that higher deivatives are inefficient in the current incarnation
  // (there is no knowledge e.g. about symmetry in the Jacobian). However,
  // it is a very good way to get the correct answers of the derivatives. In
  // practice actual production code will be better off with specialization
  // of the <src>f<SparseDiff<> ></src> implementation.
  //
  // The <src>SparseDiff</src> class is the class the user communicates with.
  // Alias classes (<linkto class=SparseDiffA>SparseDiffA</linkto> and
  // <linkto class=SparseDiffA>SparseDiffX</linkto>) exist
  // to make it possible to have different incarnations of a templated
  // method (e.g. a generic one and a specialized one). See the
  // <src>dSparseDiff</src> demo for an example of its use.
  //
  // All operators and functions are declared in <linkto file=SparseDiffMath.h> 
  // SparseDiffMath</linkto>. The output operator in 
  // <linkto file=SparseDiffIO.h>SparseDiffIO</linkto>.
  // The actual structure of the
  // data block used by <src>SparseDiff</src> is described in 
  // <linkto class=SparseDiffRep>SparseDiffRep</linkto>.
  //
  // A SparseDiff can be constructed from an AutoDiff.
  // <em>toAutoDiff(n)</em> can convert it to an AutoDiff.
  // </synopsis>
  //
  // <example>
  // <srcblock>
  // // First a simple example.
  // // We have a function of the form f(x,y,z); and want to know the
  // // value of the function for x=10; y=20; z=30; and for
  // // the derivatives at those points.
  // // Specify the values; and indicate the parameter dependence:
  // 	SparseDiff<Double> x(10.0, 0); 
  // 	SparseDiff<Double> y(20.0, 1); 
  // 	SparseDiff<Double> z(30.0, 2);
  // // The result will be:
  // 	SparseDiff<Double> result = x*y + sin(z);
  // 	cout << result.value() << endl;
  // // 199.012
  // 	cout << result.derivatives() << endl;
  // // [20, 10, 0.154251]
  // // Note: sin(30) = -0.988; cos(30) =  0.154251;
  // </srcblock>
  //
  // See for an extensive example the demo program dSparseDiff. It is
  // based on the example given above, and shows also the use of second
  // derivatives (which is just using <src>SparseDiff<SparseDiff<Double> ></src>
  // as template argument). 
  // <srcblock>
  // 	// The function, with fixed parameters a,b:
  //	template <class T> class f {
  //	public:
  //	  T operator()(const T& x) { return a_p*a_p*a_p*b_p*b_p*x; }
  //	  void set(const T& a, const T& b) { a_p = a; b_p = b; }
  //	private:
  //	  T a_p;
  //	  T b_p;
  //	};
  //	// Call it with different template arguments:
  //	  Double a0(2), b0(3), x0(7);
  //	  f<Double> f0; f0.set(a0, b0);
  //	  cout << "Value:     " << f0(x0) << endl;
  //	
  //	  SparseDiff<Double> a1(2,0), b1(3,1), x1(7);
  //	  f<SparseDiff<Double> > f1; f1.set(a1, b1);
  //	  cout << "Diff a,b:   " << f1(x1) << endl;
  //	
  //	  SparseDiff<Double> a2(2), b2(3), x2(7,0);
  //	  f<SparseDiff<Double> > f2; f2.set(a2, b2);
  //	  cout << "Diff x:     " << f2(x2) << endl;
  //	
  //	  SparseDiff<SparseDiff<Double> > a3(SparseDiff<Double>(2,0),0),
  //	    b3(SparseDiff<Double>(3,1),1), x3(SparseDiff<Double>(7));
  //	  f<SparseDiff<SparseDiff<Double> > > f3; f3.set(a3, b3);
  //	  cout << "Diff2 a,b:  " << f3(x3) << endl;
  //	
  //	  SparseDiff<SparseDiff<Double> > a4(SparseDiff<Double>(2)),
  //	    b4(SparseDiff<Double>(3)),
  //	    x4(SparseDiff<Double>(7,0),0);
  //	  f<SparseDiff<SparseDiff<Double> > > f4; f4.set(a4, b4);
  //	  cout << "Diff2 x:    " << f4(x4) << endl;
  //
  //    // Result will be:
  //    // Value:     504
  //    // Diff a,b:  (504, [756, 336])
  //    // Diff x:    (504, [72])
  //    // Diff2 a,b: ((504, [756, 336]), [(756, [756, 504]), (336, [504, 112])])
  //    // Diff2 x:   ((504, [72]), [(72, [0])])
  //
  //    // It needed the template instantiations definitions:
  //	template class f<Double>;
  //	template class f<SparseDiff<Double> >;
  //	template class f<SparseDiff<SparseDiff<Double> > >;
  // </srcblock>
  // </example>
  //
  // <motivation>
  // The creation of the class was motivated by least-squares non-linear fits
  // in cases where each individual condition equation depends only on a
  // fraction of the fixed parameters (e.g. self-calibration where only pairs
  // of antennas are present per equation), and hence only a few 
  // partial derivatives of a fitted function are needed. It would be tedious
  // to create functionals for all partial derivatives of a function.
  // </motivation>
  //
  // <templating arg=T>
  //  <li> any class that has the standard mathematical and comparison
  //	operators and functions defined.
  // </templating>
  //
  // <todo asof="2007/11/27">
  // <li> Nothing I know of.
  // </todo>

  template <class T> class SparseDiff {
  public:
    //# Typedefs
    typedef T 			value_type;
    typedef value_type&		reference;
    typedef const value_type&	const_reference;
    typedef value_type*		iterator;
    typedef const value_type*	const_iterator;

    //# Constructors
    // Construct a constant with a value of zero.  Zero derivatives.
    SparseDiff();
 
    // Construct a constant with a value of v.  Zero derivatives.
    SparseDiff(const T &v);

    // A function f(x0,x1,...,xn,...) with a value of v.  The 
    // nth derivative is one, and all other derivatives are zero. 
    SparseDiff(const T &v, const uInt n); 

    // A function f(x0,x1,...,xn,...) with a value of v.  The 
    // nth derivative is der, and all other derivatives are zero. 
    SparseDiff(const T &v, const uInt n, const T &der); 

    // Construct from an AutoDiff
    SparseDiff(const AutoDiff<T> &other);

    // Construct one from another (deep copy)
    SparseDiff(const SparseDiff<T> &other);

    // Destructor
    ~SparseDiff();

    // Assignment operator.  Assign a constant to variable.
    SparseDiff<T> &operator=(const T &v);

    // Assignment operator.  Add a gradient to variable.
    SparseDiff<T> &operator=(const pair<uInt, T> &der);

    // Assignment operator.  Assign gradients to variable.
    SparseDiff<T> &operator=(const vector<pair<uInt, T> > &der);

    // Assign from an Autodiff
    SparseDiff<T> &operator=(const AutoDiff<T> &other);

    // Assign one to another (deep copy)
    SparseDiff<T> &operator=(const SparseDiff<T> &other);

    // Assignment operators
    // <group>
    void operator*=(const SparseDiff<T> &other);
    void operator/=(const SparseDiff<T> &other);
    void operator+=(const SparseDiff<T> &other);
    void operator-=(const SparseDiff<T> &other);
    void operator*=(const T other) { rep_p->operator*=(other);
    value() *= other; }
    void operator/=(const T other) { rep_p->operator/=(other);
    value() /= other; }
    void operator+=(const T other) { value() += other; }
    void operator-=(const T other) { value() -= other; }
    // </group>

    // Convert to an AutoDiff of length <em>n</em>
    AutoDiff<T> toAutoDiff(uInt n) const;

    // Returns the pointer to the structure of value and derivatives.
    // <group>
    SparseDiffRep<T> *theRep() { return rep_p; }
    const SparseDiffRep<T> *theRep() const { return rep_p; }
    // </group>

    // Returns the value of the function
    // <group>
    T &value() { return rep_p->val_p; }
    const T &value() const { return rep_p->val_p; }
    // </group>
  
    // Returns a vector of the derivatives of a SparseDiff
    // <group>
    vector<pair<uInt, T> > &derivatives() const;
    void derivatives(vector<pair<uInt, T> > &res) const;
    const vector<pair<uInt, T> > &grad() const { return rep_p->grad_p; }
    vector<pair<uInt, T> > &grad() { return rep_p->grad_p; }
    // </group>

    // Returns a specific derivative. No check for a valid which.
    // <group>
    pair<uInt, T> &derivative(uInt which) { return rep_p->grad_p[which]; }
    const pair<uInt, T> &derivative(uInt which) const {
      return rep_p->grad_p[which]; }
    // </group>
  
    // Return total number of derivatives
    uInt nDerivatives() const { return rep_p->grad_p.size(); }
  
    // Is it a constant, i.e., with zero derivatives?
    Bool isConstant() const { return rep_p->grad_p.empty(); }

    // Sort criterium
    static Bool ltSort(pair<uInt, T> &lhs, pair<uInt, T> &rhs);

    // Sort derivative list; cater for doubles and zeroes
    void sort();
 
  private:
    //# Data
    // Value representation
    SparseDiffRep<T> *rep_p;

  };


} //# NAMESPACE CASACORE - END

#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/Mathematics/SparseDiff.tcc>
#endif //# CASACORE_NO_AUTO_TEMPLATES
#endif