1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
//# Copyright (C) 2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
//#
#ifndef SCIMATH_CLASSICALQUANTILECOMPUTER_H
#define SCIMATH_CLASSICALQUANTILECOMPUTER_H
#include <casacore/scimath/StatsFramework/StatisticsAlgorithmQuantileComputer.h>
#include <casacore/scimath/StatsFramework/StatisticsUtilities.h>
#include <casacore/casa/aips.h>
#include <map>
#include <set>
#include <utility>
#include <vector>
namespace casacore {
// This class is used internally by ClassicalStatistics objects. It should never
// be explicitly instantiated by an API developer. See the documentation of
// StatisticsAlgorithm for details regarding QuantileComputer classes.
template <
class AccumType, class DataIterator, class MaskIterator=const Bool*,
class WeightsIterator=DataIterator
> class ClassicalQuantileComputer
: public StatisticsAlgorithmQuantileComputer<CASA_STATP> {
using LimitPair = std::pair<AccumType, AccumType>;
using LimitPairVectorIter = typename std::vector<LimitPair>::const_iterator;
using IndexValueMap = typename std::map<uInt64, AccumType>;
using IndexSet = std::set<uInt64>;
public:
ClassicalQuantileComputer() = delete;
ClassicalQuantileComputer(StatisticsDataset<CASA_STATP>* dataset);
// copy semantics
ClassicalQuantileComputer(const ClassicalQuantileComputer& other);
virtual ~ClassicalQuantileComputer();
// copy semantics
ClassicalQuantileComputer& operator=(
const ClassicalQuantileComputer& other
);
// clone this object by returning a pointer to a copy
virtual StatisticsAlgorithmQuantileComputer<CASA_STATP>* clone() const;
// Caller is responsible for passing correct values of mynpts, mymin, and
// mymax; no checking is done for correctness in this method.
virtual AccumType getMedian(
uInt64 mynpts, AccumType mymin, AccumType mymax,
uInt binningThreshholdSizeBytes, Bool persistSortedArray, uInt nBins
);
// get the median of the absolute deviation about the median of the data.
virtual AccumType getMedianAbsDevMed(
uInt64 mynpts, AccumType mymin, AccumType mymax,
uInt binningThreshholdSizeBytes, Bool persistSortedArray, uInt nBins
);
// If one needs to compute both the median and QuantileComputer values, it
// is better to call getMedianAndQuantiles() rather than getMedian() and
// getQuantiles() separately, as the first will scan large data sets fewer
// times than calling the separate methods. The return value is the median;
// the quantiles are returned in the <src>quantiles</src> map. Values in the
// <src>fractions</src> set represent the locations in the CDF and should be
// between 0 and 1, exclusive.
virtual AccumType getMedianAndQuantiles(
std::map<Double, AccumType>& quantiles,
const std::set<Double>& fractions, uInt64 mynpts, AccumType mymin,
AccumType mymax, uInt binningThreshholdSizeBytes,
Bool persistSortedArray, uInt nBins
);
// Get the specified Quantiles. <src>fractions</src> must be between 0 and
// 1, noninclusive.
virtual std::map<Double, AccumType> getQuantiles(
const std::set<Double>& fractions, uInt64 mynpts, AccumType mymin,
AccumType mymax, uInt binningThreshholdSizeBytes,
Bool persistSortedArray, uInt nBins
);
// reset the private fields
virtual void reset();
protected:
// <group>
// Get the counts of data within the specified histogram bins. The number of
// arrays within binCounts will be equal to the number of histograms in
// <src>hist</src>. Each array within <src>binCounts</src> will have the
// same number of elements as the number of bins in its corresponding
// histogram in <src>hist</src>.
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const;
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const DataRanges& ranges, Bool isInclude,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const;
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const MaskIterator& maskBegin, uInt maskStride,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const;
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const;
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const ;
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const;
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const;
virtual void _findBins(
std::vector<std::vector<uInt64>>& binCounts,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit
) const;
// </group>
//<group>
// populate an unsorted array with valid data.
// no weights, no mask, no ranges
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride
) const;
// ranges
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const DataRanges& ranges, Bool isInclude
) const;
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride
) const;
// mask and ranges
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
) const;
// weights
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride
) const;
// weights and ranges
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude
) const;
// weights and mask
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride
) const;
// weights, mask, ranges
virtual void _populateArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
) const;
// </group>
// <group>
// Create a std::vector of unsorted arrays, one array for each bin defined
// by <src>includeLimits</src>. <src>includeLimits</src> should be
// non-overlapping and should be given in ascending order (the algorithm
// used assumes this). Once the sum of the lengths of all arrays equals
// <src>maxCount</src> the method will return with no further processing.
// no weights, no mask, no ranges
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const IncludeLimits& includeLimits, uInt64 maxCount
) const;
// ranges
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude,
const IncludeLimits& includeLimits, uInt64 maxCount
) const;
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const IncludeLimits& includeLimits, uInt64 maxCount
) const;
// mask and ranges
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude,
const IncludeLimits& includeLimits, uInt64 maxCount
) const;
// weights
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, const WeightsIterator& weightsBegin,
uInt64 nr, uInt dataStride, const IncludeLimits& includeLimits,
uInt64 maxCount
) const;
// weights and ranges
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, const WeightsIterator& weightsBegin,
uInt64 nr, uInt dataStride, const DataRanges& ranges, Bool isInclude,
const IncludeLimits& includeLimits, uInt64 maxCount
) const;
// weights and mask
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, const WeightsIterator& weightBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride, const IncludeLimits& includeLimits, uInt64 maxCount
) const;
// weights, mask, ranges
virtual void _populateArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
const DataIterator& dataBegin, const WeightsIterator& weightBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride, const DataRanges& ranges, Bool isInclude,
const IncludeLimits& includeLimits, uInt64 maxCount
) const;
// </group>
// <group>
// no weights, no mask, no ranges
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
uInt64 nr, uInt dataStride, uInt maxElements
) const;
// ranges
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const DataRanges& ranges, Bool isInclude,
uInt maxElements
) const;
// mask
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride, uInt maxElements
) const;
// mask and ranges
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude, uInt maxElements
) const;
// weights
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
uInt maxElements
) const;
// weights and ranges
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude, uInt maxElements
) const;
// weights and mask
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride, uInt maxElements
) const;
// weights, mask, ranges
virtual Bool _populateTestArray(
std::vector<AccumType>& ary, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude, uInt maxElements
) const;
// </group>
// get values from sorted array if the array is small enough to be held in
// memory. Note that this is the array containing all good data, not data in
// just a single bin representing a subset of good data.
// Returns True if the data were successfully retrieved.
// If True is returned, the values map will contain a map of index to value.
// It is the caller's responsibility to check that <src>mynpts</src> is not
// 0; no checking is done here.
Bool _valuesFromSortedArray(
std::map<uInt64, AccumType>& values, uInt64 mynpts,
const std::set<uInt64>& indices, uInt64 maxArraySize,
Bool persistSortedArray
);
private:
Bool _doMedAbsDevMed{False};
// for use in often repeatedly run macros
AccumType _myMedian{0};
// tally the number of data points that fall into each bin provided by
// <src>hist</src>. Any points that are less than hist.minLimit or greater
// than hist.minLimit + hist.nBins*hist.binWidth are not included in the
// counts. A data point that falls exactly on a bin boundary is considered
// to be in the higher index bin. <src>sameVal</src> will be non-null if all
// the good values in the histogram range are the same. In that case, the
// value held will be the value of each of those data points.
std::vector<std::vector<uInt64>> _binCounts(
std::vector<std::shared_ptr<AccumType>>& sameVal,
const std::vector<StatsHistogram<AccumType>>& hist
);
void _computeBins(
std::vector<std::vector<uInt64>>& bins,
std::vector<std::shared_ptr<AccumType>>& sameVal,
std::vector<Bool>& allSame, DataIterator dataIter,
MaskIterator maskIter, WeightsIterator weightsIter, uInt64 count,
const std::vector<StatsHistogram<AccumType>>& hist,
const std::vector<AccumType>& maxLimit,
const typename StatisticsDataset<CASA_STATP>::ChunkData& chunk
);
void _computeDataArray(
std::vector<AccumType>& ary, DataIterator dataIter,
MaskIterator maskIter, WeightsIterator weightsIter, uInt64 dataCount,
const typename StatisticsDataset<CASA_STATP>::ChunkData& chunk
);
void _computeDataArrays(
std::vector<std::vector<AccumType>>& arys, uInt64& currentCount,
DataIterator dataIter, MaskIterator maskIter,
WeightsIterator weightsIter, uInt64 dataCount,
const IncludeLimits& includeLimits, uInt64 maxCount,
const typename StatisticsDataset<CASA_STATP>::ChunkData& chunk
);
// Create an unsorted array of the complete data set. If
// <src>includeLimits</src> is specified, only points within those limits
// (including min but excluding max, as per definition of bins), are
// included.
void _createDataArray(std::vector<AccumType>& array);
void _createDataArrays(
std::vector<std::vector<AccumType>>& arrays,
const IncludeLimits& includeLimits, uInt64 maxCount
);
// extract data from multiple histograms given by <src>hist</src>.
// <src>dataIndices</src> represent the indices of the sorted arrays of
// values to extract. There should be exactly one set of data indices to
// extract for each supplied histogram. The data indices are relative to the
// minimum value of the minimum bin in their respective histograms. The
// ordering of the maps in the returned std::vector represent the ordering
// of histograms in <src>hist</src>. <src>hist</src> should contain
// non-overlapping histograms and the histograms should be specified in
// ascending order.
std::vector<IndexValueMap> _dataFromMultipleBins(
const std::vector<StatsHistogram<AccumType>>& hist,
uInt64 maxArraySize, const std::vector<IndexSet>& dataIndices,
uInt nBins
);
std::vector<IndexValueMap> _dataFromSingleBins(
const std::vector<uInt64>& binNpts, uInt64 maxArraySize,
const IncludeLimits& binLimits,
const std::vector<IndexSet>& dataIndices, uInt nBins
);
// get the values for the specified indices in the sorted array of all good
// data
IndexValueMap _indicesToValues(
uInt64 mynpts, AccumType mymin, AccumType mymax, uInt64 maxArraySize,
const IndexSet& dataIndices, Bool persistSortedArray, uInt nBins
);
// get the index (for odd npts) or indices (for even npts) of the median of
// the sorted array.
static IndexSet _medianIndices(uInt64 mynpts);
};
}
#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/StatsFramework/ClassicalQuantileComputer.tcc>
#endif
#endif
|