1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
//# Copyright (C) 2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
//#
#ifndef SCIMATH_CONSTRAINEDRANGESTATISTICS_H
#define SCIMATH_CONSTRAINEDRANGESTATISTICS_H
#include <casacore/casa/aips.h>
#include <casacore/scimath/StatsFramework/ClassicalStatistics.h>
#include <casacore/scimath/StatsFramework/ConstrainedRangeQuantileComputer.h>
#include <set>
#include <vector>
#include <utility>
namespace casacore {
// Abstract base class for statistics algorithms which are characterized by
// a range of good values. The range is usually calculated dynamically based
// on the entire distribution. The specifics of such calculations are
// delegated to derived classes.
template <
class AccumType, class DataIterator, class MaskIterator=const Bool*,
class WeightsIterator=DataIterator
>
class ConstrainedRangeStatistics : public ClassicalStatistics<CASA_STATP> {
public:
ConstrainedRangeStatistics() = delete;
virtual ~ConstrainedRangeStatistics();
// <group>
// In the following group of methods, if the size of the composite dataset
// is smaller than
// <src>binningThreshholdSizeBytes</src>, the composite dataset
// will be (perhaps partially) sorted and persisted in memory during the
// call. In that case, and if <src>persistSortedArray</src> is True, this
// sorted array will remain in memory after the call and will be used on
// subsequent calls of this method when
// <src>binningThreshholdSizeBytes</src> is greater than the size of the
// composite dataset. If <src>persistSortedArray</src> is False, the sorted
// array will not be stored after this call completes and so any subsequent
// calls for which the dataset size is less than
// <src>binningThreshholdSizeBytes</src>, the dataset will be sorted from
// scratch. Values which are not included due to non-unity strides, are not
// included in any specified ranges, are masked, or have associated weights
// of zero are not considered as dataset members for quantile computations.
// If one has a priori information regarding the number of points (npts)
// and/or the minimum and maximum values of the data set, these can be
// supplied to improve performance. Note however, that if these values are
// not correct, the resulting median and/or quantile values will also not be
// correct (although see the following notes regarding max/min). Note that
// if this object has already had getStatistics() called, and the min and
// max were calculated, there is no need to pass these values in as they
// have been stored internally and used (although passing them in shouldn't
// hurt anything). If provided, npts, the number of points falling in the
// specified ranges which are not masked and have weights > 0, should be
// exactly correct. <src>min</src> can be less than the true minimum, and
// <src>max</src> can be greater than the True maximum, but for best
// performance, these should be as close to the actual min and max as
// possible. In order for quantile computations to occur over multiple
// datasets, all datasets must be available. This means that if
// setCalculateAsAdded() was previously called by passing in a value of
// True, these methods will throw an exception as the previous call
// indicates that there is no guarantee that all datasets will be available.
// If one uses a data provider (by having called setDataProvider()), then
// this should not be an issue.
// get the median of the distribution.
// For a dataset with an odd number of good points, the median is just the
// value at index int(N/2) in the equivalent sorted dataset, where N is the
// number of points. For a dataset with an even number of points, the median
// is the mean of the values at indices int(N/2)-1 and int(N/2) in the
// sorted dataset.
virtual AccumType getMedian(
std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
);
// get the median of the absolute deviation about the median of the data.
virtual AccumType getMedianAbsDevMed(
std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
);
// If one needs to compute both the median and quantile values, it is better
// to call getMedianAndQuantiles() rather than getMedian() and
// getQuantiles() separately, as the first will scan large data sets fewer
// times than calling the seperate methods. The return value is the median;
// the quantiles are returned in the <src>quantileToValue</src> map.
virtual AccumType getMedianAndQuantiles(
std::map<Double, AccumType>& quantileToValue,
const std::set<Double>& quantiles,
std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
);
// Get the specified quantiles. <src>quantiles</src> must be between 0 and
// 1, noninclusive.
virtual std::map<Double, AccumType> getQuantiles(
const std::set<Double>& quantiles,
std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=NULL,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
);
// </group>
// get the min and max of the data set
virtual void getMinMax(AccumType& mymin, AccumType& mymax);
// scan the dataset(s) that have been added, and find the number of good
// points. This method may be called even if setStatsToCaclulate has been
// called and NPTS has been excluded. If setCalculateAsAdded(True) has
// previously been called after this object has been (re)initialized, an
// exception will be thrown.
virtual uInt64 getNPts();
// see base class description
virtual LocationType getStatisticIndex(StatisticsData::STATS stat);
// reset object to initial state. Clears all private fields including data,
// accumulators, global range.
virtual void reset();
protected:
// Concrete derived classes are responsible for providing an appropriate
// QuantileComputer object to the constructor, which is ultimately passed
// up the instantiation hierarchy and stored at the StatisticsAlgorithm
// level.
ConstrainedRangeStatistics(
std::shared_ptr<ConstrainedRangeQuantileComputer<CASA_STATP>> qc
);
// copy semantics
ConstrainedRangeStatistics(
const ConstrainedRangeStatistics<CASA_STATP>& other
);
// copy semantics
ConstrainedRangeStatistics<CASA_STATP>& operator=(
const ConstrainedRangeStatistics<CASA_STATP>& other
);
// <group>
// scan through the data set to determine the number of good (unmasked,
// weight > 0, within range) points. The first with no mask, no ranges, and
// no weights is trivial with npts = nr in this class, but is implemented
// here so that derived classes may override it.
virtual void _accumNpts(
uInt64& npts, const DataIterator& dataStart, uInt64 nr, uInt dataStride
) const;
virtual void _accumNpts(
uInt64& npts,
const DataIterator& dataStart, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _accumNpts(
uInt64& npts, const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride
) const;
virtual void _accumNpts(
uInt64& npts,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _accumNpts(
uInt64& npts, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride
) const;
virtual void _accumNpts(
uInt64& npts, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _accumNpts(
uInt64& npts, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _accumNpts(
uInt64& npts, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride
) const;
// </group>
virtual AccumType _getStatistic(StatisticsData::STATS stat);
virtual StatsData<AccumType> _getStatistics();
// <group>
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride
) const;
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride
) const;
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, const WeightsIterator& weightsBegin,
uInt64 nr, uInt dataStride
) const;
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, const WeightsIterator& weightsBegin,
uInt64 nr, uInt dataStride, const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, const WeightsIterator& weightsBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride, const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMax(
std::shared_ptr<AccumType>& mymin, std::shared_ptr<AccumType>& mymax,
const DataIterator& dataBegin, const WeightsIterator& weightBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride
) const;
// </group>
// <group>
// Sometimes we want the min, max, and npts all in one scan.
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride
) const;
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const MaskIterator& maskBegin, uInt maskStride
) const;
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin, uInt64 nr,
uInt dataStride, const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride
) const;
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin,
const WeightsIterator& weightsBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
) const;
virtual void _minMaxNpts(
uInt64& npts, std::shared_ptr<AccumType>& mymin,
std::shared_ptr<AccumType>& mymax, const DataIterator& dataBegin,
const WeightsIterator& weightBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride
) const;
// </group>
// This method is purposefully non-virtual. Derived classes
// should implement the version with no parameters.
void _setRange(std::shared_ptr<std::pair<AccumType, AccumType>> r);
// derived classes need to implement how to set their respective range
virtual void _setRange() = 0;
// <group>
// no weights, no mask, no ranges
virtual void _unweightedStats(
StatsData<AccumType>& stats, uInt64& ngood, LocationType& location,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride
);
// no weights, no mask
virtual void _unweightedStats(
StatsData<AccumType>& stats, uInt64& ngood, LocationType& location,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const DataRanges& ranges, Bool isInclude
);
virtual void _unweightedStats(
StatsData<AccumType>& stats, uInt64& ngood, LocationType& location,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride
);
virtual void _unweightedStats(
StatsData<AccumType>& stats, uInt64& ngood, LocationType& location,
const DataIterator& dataBegin, uInt64 nr, uInt dataStride,
const MaskIterator& maskBegin, uInt maskStride,
const DataRanges& ranges, Bool isInclude
);
// </group>
// <group>
// has weights, but no mask, no ranges
virtual void _weightedStats(
StatsData<AccumType>& stats, LocationType& location,
const DataIterator& dataBegin, const WeightsIterator& weightsBegin,
uInt64 nr, uInt dataStride
);
virtual void _weightedStats(
StatsData<AccumType>& stats, LocationType& location,
const DataIterator& dataBegin, const WeightsIterator& weightsBegin,
uInt64 nr, uInt dataStride, const DataRanges& ranges, Bool isInclude
);
virtual void _weightedStats(
StatsData<AccumType>& stats, LocationType& location,
const DataIterator& dataBegin, const WeightsIterator& weightBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride
);
virtual void _weightedStats(
StatsData<AccumType>& stats, LocationType& location,
const DataIterator& dataBegin, const WeightsIterator& weightBegin,
uInt64 nr, uInt dataStride, const MaskIterator& maskBegin,
uInt maskStride, const DataRanges& ranges, Bool isInclude
);
// </group>
private:
std::shared_ptr<std::pair<AccumType, AccumType>> _range{};
};
}
#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/StatsFramework/ConstrainedRangeStatistics.tcc>
#endif
#endif
|