File: StatisticsAlgorithm.h

package info (click to toggle)
casacore 3.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 51,912 kB
  • sloc: cpp: 471,569; fortran: 16,372; ansic: 7,416; yacc: 4,714; lex: 2,346; sh: 1,865; python: 629; perl: 531; sed: 499; csh: 201; makefile: 32
file content (403 lines) | stat: -rw-r--r-- 17,886 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
//# Copyright (C) 2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: casa-feedback@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#

#ifndef SCIMATH_STATISTICSALGORITHM_H
#define SCIMATH_STATISTICSALGORITHM_H

#include <casacore/casa/aips.h>
#include <casacore/casa/Exceptions/Error.h>
#include <casacore/scimath/StatsFramework/StatsDataProvider.h>
#include <casacore/scimath/StatsFramework/StatisticsData.h>
#include <casacore/scimath/StatsFramework/StatisticsDataset.h>
#include <casacore/scimath/StatsFramework/StatisticsTypes.h>

#include <map>
#include <set>
#include <vector>
#include <memory>

namespace casacore {

// Base class of statistics algorithm class hierarchy.

// The default implementation is such that statistics are only calculated when
// methods that actually compute statistics are called. Until then, the
// iterators which point to the beginning of data sets, masks, etc. are held in
// memory. Thus, the caller must keep all data sets available for the statistics
// object until these methods are called, and of course, if the actual data
// values are changed between adding data and calculating statistics, the
// updated values are used when calculating statistics. Derived classes may
// override this behavior.
//
// PRECISION CONSIDERATIONS
// Many statistics are computed via accumulators. This can lead to precision
// issues, especially for large datasets. For this reason, it is highly
// recommended that the data type one uses as the AccumType be of higher
// precision, if possible, than the data type pointed to by input iterator. So
// for example, if one has a data set of Float values (to which the
// InputIterator type points to), then one should use type Double for the
// AccumType. In this case, the Float data values will be converted to Doubles
// before they are accumulated.
//
// METHODS OF PROVIDING DATA
// Data may be provided in one of two mutually exclusive ways. The first way is
// simpler, and that is to use the setData()/addData() methods. Calling
// setData() will clear any previous data that was added via these methods or
// via a data provider (see below). Calling addData() after having called
// setData() will add a data set to the set of data sets on which statistics
// will be calculated. In order for this to work correctly, the iterators which
// are passed into these methods must still be valid when statistics are
// calculated (although note that some derived classes allow certain statistics
// to be updated as data sets are added via these methods. See specific classes
// for details).
//
// The second way to provide data is via an object derived from class
// StatsDataProvider, in which methods are implemented for retrieving various
// information about the data sets to be included. Such an interface is
// necessary for data structures which do not easily lend themselves to be
// provided via the setData()/addData() methods. For example, in the case of
// iterating through a Lattice, a lattice iterator will overwrite the memory
// location of the previous chunk of data with the current chunk of data.
// Therefore, if one does not wish to load data from the entire lattice into
// memory (which is why LatticeIterator was designed to have the behavior it
// does), one must use the LatticeStatsDataProvider class, which the statistics
// framework will use to iterate through the lattice, only keeping one chunk of
// the data of the lattice in memory any given moment.
//
// STORAGE OF DATA
// In order to reduce maintenance costs, the accounting details of the data sets
// are maintained in a StatisticsDataset object. This object is held in memory
// at the StatisticsAlgorithm level in the _dataset private field of this class
// when a derived class is instantiated. A StatisticsDataset object should never
// need to be explicitly instantiated by an API developer.
//
// QUANTILES
// A quantile is a value contained in a data set, such that, it has a zero-based
// index of ceil(q*n)-1 in the equivalent ordered dataset, where 0 < q < 1
// specifies the fractional location within the ordered dataset and n is the
// total number of valid elements. Note that, for a dataset with an odd number
// of elements, the median is the same as the quantile value when q = 0.5.
// However, there is no such correspondence between the median in a dataset with
// an even number of elements, since the median in that case is given by the
// mean of the elements of zero-based indices n/2-1 and n/2 in the equivalent
// ordered dataset. Thus, in the case of a dataset with an even number of
// values, the median may not even exist in the dataset, while a generic
// quantile value must exist in the dataset by definition. Note when calculating
// quantile values, a dataset that does not fall in specified dataset ranges,
// is not included via a stride specification, is masked, or has a weight of
// zero, is not considered a member of the dataset for the purposes of quantile
// calculations.
//
// CLASS ORGANIZATION
// In general, in the StatsFramework class hierarchy, classes derived from
// StatisticsAlgorithm and its descendants contain methods which calculate the
// relevant statistics which are computed via accumulation. These classes also
// contain the top level methods for computing the quantile-like statistics, for
// the convenience of the API developer. Derived classes of StatisticsAlgorithm
// normally will have a private field which is an object that contains methods
// which compute the various quantile-like statistics. These so-called
// QuantileComputer classes have been created to reduce maintainability costs;
// because putting all the code into single class files was becoming unwieldy.
// The concrete QuantileComputer classes are ultimately derived from
// StatisticsAlgorithmQuantileComputer, which is the virtual base class of this
// hierarchy. StatisticsAlgorithm objects do not contain a
// StatisticsAlgorithmQuantileComputer private field, since StatisticsAlgorithm
// is also a virtual base class and hence no actual statistics are computed
// within it. The design is such that the only classes an API developer should
// over instantiate are the derived classes of StatisticsAlgorithm; the
// QuantileComputer classes should never be explicitly instantiated in code
// which uses the StatsFramework API.

template <
    class AccumType, class DataIterator, class MaskIterator=const Bool *,
    class WeightsIterator=DataIterator
>
class StatisticsAlgorithm {

public:

    virtual ~StatisticsAlgorithm();

    // Clone this instance
    virtual StatisticsAlgorithm<CASA_STATP>* clone() const = 0;

    // <group>
    // Add a dataset to an existing set of datasets on which statistics are to
    // be calculated. nr is the number of points to be considered. If
    // <src>dataStride</src> is greater than 1, when
    // <src>nrAccountsForStride</src>=True indicates that the stride has been
    // taken into account in the value of <src>nr</src>. Otherwise, it has not
    // so that the actual number of points to include is nr/dataStride if
    // nr % dataStride == 0 or (int)(nr/dataStride) + 1 otherwise. if one calls
    // this method after a data provider has been set, an exception will be
    // thrown. In this case, one should call setData(), rather than addData(),
    // to indicate that the underlying data provider should be removed.
    // <src>dataRanges</src> provide the ranges of data to include if
    // <src>isInclude</src> is True, or ranges of data to exclude if
    // <src>isInclude</src> is False. If a datum equals the end point of a data
    // range, it is considered good (included) if <src>isInclude</src> is True,
    // and it is considered bad (excluded) if <src>isInclude</src> is False.

    void addData(
        const DataIterator& first, uInt nr, uInt dataStride=1,
        Bool nrAccountsForStride=False
    );

    void addData(
        const DataIterator& first, uInt nr,
        const DataRanges& dataRanges, Bool isInclude=True, uInt dataStride=1,
        Bool nrAccountsForStride=False
    );

    void addData(
        const DataIterator& first, const MaskIterator& maskFirst,
        uInt nr, uInt dataStride=1, Bool nrAccountsForStride=False,
        uInt maskStride=1
    );

    void addData(
        const DataIterator& first, const MaskIterator& maskFirst,
        uInt nr, const DataRanges& dataRanges, Bool isInclude=True,
        uInt dataStride=1, Bool nrAccountsForStride=False, uInt maskStride=1
    );

    void addData(
        const DataIterator& first, const WeightsIterator& weightFirst,
        uInt nr, uInt dataStride=1, Bool nrAccountsForStride=False
    );

    void addData(
        const DataIterator& first, const WeightsIterator& weightFirst,
        uInt nr, const DataRanges& dataRanges, Bool isInclude=True,
        uInt dataStride=1, Bool nrAccountsForStride=False
    );

    void addData(
        const DataIterator& first, const WeightsIterator& weightFirst,
        const MaskIterator& maskFirst, uInt nr, uInt dataStride=1,
        Bool nrAccountsForStride=False, uInt maskStride=1
    );

    void addData(
        const DataIterator& first, const WeightsIterator& weightFirst,
        const MaskIterator& maskFirst, uInt nr, const DataRanges& dataRanges,
        Bool isInclude=True, uInt dataStride=1, Bool nrAccountsForStride=False,
        uInt maskStride=1
    );
    // </group>

    // get the algorithm that this object uses for computing stats
    virtual StatisticsData::ALGORITHM algorithm() const = 0;

    virtual AccumType getMedian(
        std::shared_ptr<uInt64> knownNpts=nullptr,
        std::shared_ptr<AccumType> knownMin=nullptr,
        std::shared_ptr<AccumType> knownMax=nullptr,
        uInt binningThreshholdSizeBytes=4096*4096,
        Bool persistSortedArray=False, uInt nBins=10000
    ) = 0;

    // The return value is the median; the quantiles are returned in the
    // <src>quantileToValue</src> map.
    virtual AccumType getMedianAndQuantiles(
        std::map<Double, AccumType>& quantileToValue,
        const std::set<Double>& quantiles,
        std::shared_ptr<uInt64> knownNpts=nullptr,
        std::shared_ptr<AccumType> knownMin=nullptr,
        std::shared_ptr<AccumType> knownMax=nullptr,
        uInt binningThreshholdSizeBytes=4096*4096,
        Bool persistSortedArray=False, uInt nBins=10000
    ) = 0;

    // get the median of the absolute deviation about the median of the data.
    virtual AccumType getMedianAbsDevMed(
        std::shared_ptr<uInt64> knownNpts=nullptr,
        std::shared_ptr<AccumType> knownMin=nullptr,
        std::shared_ptr<AccumType> knownMax=nullptr,
        uInt binningThreshholdSizeBytes=4096*4096,
        Bool persistSortedArray=False, uInt nBins=10000
    ) = 0;

    // Purposefully not virtual. Derived classes should not implement.
    AccumType getQuantile(
        Double quantile, std::shared_ptr<uInt64> knownNpts=nullptr,
        std::shared_ptr<AccumType> knownMin=nullptr,
        std::shared_ptr<AccumType> knownMax=nullptr,
        uInt binningThreshholdSizeBytes=4096*4096,
        Bool persistSortedArray=False, uInt nBins=10000
    );

    // get a map of quantiles to values.
    virtual std::map<Double, AccumType> getQuantiles(
        const std::set<Double>& quantiles, std::shared_ptr<uInt64> npts=nullptr,
        std::shared_ptr<AccumType> min=nullptr, std::shared_ptr<AccumType> max=nullptr,
        uInt binningThreshholdSizeBytes=4096*4096,
        Bool persistSortedArray=False, uInt nBins=10000
    ) = 0;

    // get the value of the specified statistic. Purposefully not virtual.
    // Derived classes should not implement.
    AccumType getStatistic(StatisticsData::STATS stat);

    // certain statistics such as max and min have locations in the dataset
    // associated with them. This method gets those locations. The first value
    // in the returned pair is the zero-based dataset number that was set or
    // added. The second value is the zero-based index in that dataset. A data
    // stride of greater than one is not accounted for, so the index represents
    // the actual location in the data set, independent of the dataStride value.
    virtual LocationType getStatisticIndex(StatisticsData::STATS stat) = 0;

    // Return statistics. Purposefully not virtual. Derived classes should not
    // implement.
    StatsData<AccumType> getStatistics();

    // reset this object by clearing data.
    virtual void reset();

    // <group>
    // setdata() clears any current datasets or data provider and then adds the
    // specified data set as the first dataset in the (possibly new) set of data
    // sets for which statistics are to be calculated. See addData() for
    // parameter meanings. These methods are purposefully not virtual. Derived
    // classes should not implement.
    void setData(
        const DataIterator& first, uInt nr, uInt dataStride=1,
        Bool nrAccountsForStride=False
    );

    void setData(
        const DataIterator& first, uInt nr, const DataRanges& dataRanges,
        Bool isInclude=True, uInt dataStride=1, Bool nrAccountsForStride=False
    );

    void setData(
        const DataIterator& first, const MaskIterator& maskFirst, uInt nr,
        uInt dataStride=1, Bool nrAccountsForStride=False, uInt maskStride=1
    );

    void setData(
        const DataIterator& first, const MaskIterator& maskFirst,
        uInt nr, const DataRanges& dataRanges, Bool isInclude=True,
        uInt dataStride=1, Bool nrAccountsForStride=False, uInt maskStride=1
    );

    void setData(
        const DataIterator& first, const WeightsIterator& weightFirst, uInt nr,
        uInt dataStride=1, Bool nrAccountsForStride=False
    );

    void setData(
        const DataIterator& first, const WeightsIterator& weightFirst, uInt nr,
        const DataRanges& dataRanges, Bool isInclude=True, uInt dataStride=1,
        Bool nrAccountsForStride=False
    );

    void setData(
        const DataIterator& first, const WeightsIterator& weightFirst,
        const MaskIterator& maskFirst, uInt nr, uInt dataStride=1,
        Bool nrAccountsForStride=False, uInt maskStride=1
    );

    void setData(
        const DataIterator& first, const WeightsIterator& weightFirst,
        const MaskIterator& maskFirst, uInt nr, const DataRanges& dataRanges,
        Bool isInclude=True, uInt dataStride=1, Bool nrAccountsForStride=False,
        uInt maskStride=1
    );
    // </group>

    // instead of setting and adding data "by hand", set the data provider
    // that will provide all the data sets. Calling this method will clear
    // any other data sets that have previously been set or added. Method
    // is virtual to allow derived classes to carry out any necessary
    // specialized accounting when resetting the data provider.
    virtual void setDataProvider(StatsDataProvider<CASA_STATP> *dataProvider);

    // Provide guidance to algorithms by specifying a priori which statistics
    // the caller would like calculated.
    virtual void setStatsToCalculate(std::set<StatisticsData::STATS>& stats);

protected:
    StatisticsAlgorithm();

    // use copy semantics, except for the data provider which uses reference
    // semantics
    StatisticsAlgorithm(const StatisticsAlgorithm& other);

    // use copy semantics, except for the data provider which uses reference
    // semantics
    StatisticsAlgorithm& operator=(const StatisticsAlgorithm& other);

    // Allows derived classes to do things after data is set or added.
    // Default implementation does nothing.
    virtual void _addData() {}

    // <group>
    // These methods are purposefully not virtual. Derived classes should
    // not implement.
    const StatisticsDataset<CASA_STATP>& _getDataset() const {
        return _dataset;
    }
    
    StatisticsDataset<CASA_STATP>& _getDataset() { return _dataset; }
    // </group>

    virtual AccumType _getStatistic(StatisticsData::STATS stat) = 0;

    virtual StatsData<AccumType> _getStatistics() = 0;

    const std::set<StatisticsData::STATS> _getStatsToCalculate() const {
        return _statsToCalculate;
    }

    virtual const std::set<StatisticsData::STATS>&
    _getUnsupportedStatistics() const {
        return _unsupportedStats;
    }

    // Derived classes should normally call this in their constructors, if
    // applicable.
    void _setUnsupportedStatistics(
        const std::set<StatisticsData::STATS>& stats
    ) {
        _unsupportedStats = stats;
    }

private:
    std::set<StatisticsData::STATS> _statsToCalculate{}, _unsupportedStats{};
    StatisticsDataset<CASA_STATP> _dataset{};
    Bool _resetDataset{True};

    void _resetExceptDataset();

};

}

#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/StatsFramework/StatisticsAlgorithm.tcc>
#endif

#endif