1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
//# Copyright (C) 2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
//#
#ifndef SCIMATH_STATISTICSALGORITHM_H
#define SCIMATH_STATISTICSALGORITHM_H
#include <casacore/casa/aips.h>
#include <casacore/casa/Exceptions/Error.h>
#include <casacore/scimath/StatsFramework/StatsDataProvider.h>
#include <casacore/scimath/StatsFramework/StatisticsData.h>
#include <casacore/scimath/StatsFramework/StatisticsDataset.h>
#include <casacore/scimath/StatsFramework/StatisticsTypes.h>
#include <map>
#include <set>
#include <vector>
#include <memory>
namespace casacore {
// Base class of statistics algorithm class hierarchy.
// The default implementation is such that statistics are only calculated when
// methods that actually compute statistics are called. Until then, the
// iterators which point to the beginning of data sets, masks, etc. are held in
// memory. Thus, the caller must keep all data sets available for the statistics
// object until these methods are called, and of course, if the actual data
// values are changed between adding data and calculating statistics, the
// updated values are used when calculating statistics. Derived classes may
// override this behavior.
//
// PRECISION CONSIDERATIONS
// Many statistics are computed via accumulators. This can lead to precision
// issues, especially for large datasets. For this reason, it is highly
// recommended that the data type one uses as the AccumType be of higher
// precision, if possible, than the data type pointed to by input iterator. So
// for example, if one has a data set of Float values (to which the
// InputIterator type points to), then one should use type Double for the
// AccumType. In this case, the Float data values will be converted to Doubles
// before they are accumulated.
//
// METHODS OF PROVIDING DATA
// Data may be provided in one of two mutually exclusive ways. The first way is
// simpler, and that is to use the setData()/addData() methods. Calling
// setData() will clear any previous data that was added via these methods or
// via a data provider (see below). Calling addData() after having called
// setData() will add a data set to the set of data sets on which statistics
// will be calculated. In order for this to work correctly, the iterators which
// are passed into these methods must still be valid when statistics are
// calculated (although note that some derived classes allow certain statistics
// to be updated as data sets are added via these methods. See specific classes
// for details).
//
// The second way to provide data is via an object derived from class
// StatsDataProvider, in which methods are implemented for retrieving various
// information about the data sets to be included. Such an interface is
// necessary for data structures which do not easily lend themselves to be
// provided via the setData()/addData() methods. For example, in the case of
// iterating through a Lattice, a lattice iterator will overwrite the memory
// location of the previous chunk of data with the current chunk of data.
// Therefore, if one does not wish to load data from the entire lattice into
// memory (which is why LatticeIterator was designed to have the behavior it
// does), one must use the LatticeStatsDataProvider class, which the statistics
// framework will use to iterate through the lattice, only keeping one chunk of
// the data of the lattice in memory any given moment.
//
// STORAGE OF DATA
// In order to reduce maintenance costs, the accounting details of the data sets
// are maintained in a StatisticsDataset object. This object is held in memory
// at the StatisticsAlgorithm level in the _dataset private field of this class
// when a derived class is instantiated. A StatisticsDataset object should never
// need to be explicitly instantiated by an API developer.
//
// QUANTILES
// A quantile is a value contained in a data set, such that, it has a zero-based
// index of ceil(q*n)-1 in the equivalent ordered dataset, where 0 < q < 1
// specifies the fractional location within the ordered dataset and n is the
// total number of valid elements. Note that, for a dataset with an odd number
// of elements, the median is the same as the quantile value when q = 0.5.
// However, there is no such correspondence between the median in a dataset with
// an even number of elements, since the median in that case is given by the
// mean of the elements of zero-based indices n/2-1 and n/2 in the equivalent
// ordered dataset. Thus, in the case of a dataset with an even number of
// values, the median may not even exist in the dataset, while a generic
// quantile value must exist in the dataset by definition. Note when calculating
// quantile values, a dataset that does not fall in specified dataset ranges,
// is not included via a stride specification, is masked, or has a weight of
// zero, is not considered a member of the dataset for the purposes of quantile
// calculations.
//
// CLASS ORGANIZATION
// In general, in the StatsFramework class hierarchy, classes derived from
// StatisticsAlgorithm and its descendants contain methods which calculate the
// relevant statistics which are computed via accumulation. These classes also
// contain the top level methods for computing the quantile-like statistics, for
// the convenience of the API developer. Derived classes of StatisticsAlgorithm
// normally will have a private field which is an object that contains methods
// which compute the various quantile-like statistics. These so-called
// QuantileComputer classes have been created to reduce maintainability costs;
// because putting all the code into single class files was becoming unwieldy.
// The concrete QuantileComputer classes are ultimately derived from
// StatisticsAlgorithmQuantileComputer, which is the virtual base class of this
// hierarchy. StatisticsAlgorithm objects do not contain a
// StatisticsAlgorithmQuantileComputer private field, since StatisticsAlgorithm
// is also a virtual base class and hence no actual statistics are computed
// within it. The design is such that the only classes an API developer should
// over instantiate are the derived classes of StatisticsAlgorithm; the
// QuantileComputer classes should never be explicitly instantiated in code
// which uses the StatsFramework API.
template <
class AccumType, class DataIterator, class MaskIterator=const Bool *,
class WeightsIterator=DataIterator
>
class StatisticsAlgorithm {
public:
virtual ~StatisticsAlgorithm();
// Clone this instance
virtual StatisticsAlgorithm<CASA_STATP>* clone() const = 0;
// <group>
// Add a dataset to an existing set of datasets on which statistics are to
// be calculated. nr is the number of points to be considered. If
// <src>dataStride</src> is greater than 1, when
// <src>nrAccountsForStride</src>=True indicates that the stride has been
// taken into account in the value of <src>nr</src>. Otherwise, it has not
// so that the actual number of points to include is nr/dataStride if
// nr % dataStride == 0 or (int)(nr/dataStride) + 1 otherwise. if one calls
// this method after a data provider has been set, an exception will be
// thrown. In this case, one should call setData(), rather than addData(),
// to indicate that the underlying data provider should be removed.
// <src>dataRanges</src> provide the ranges of data to include if
// <src>isInclude</src> is True, or ranges of data to exclude if
// <src>isInclude</src> is False. If a datum equals the end point of a data
// range, it is considered good (included) if <src>isInclude</src> is True,
// and it is considered bad (excluded) if <src>isInclude</src> is False.
void addData(
const DataIterator& first, uInt nr, uInt dataStride=1,
Bool nrAccountsForStride=False
);
void addData(
const DataIterator& first, uInt nr,
const DataRanges& dataRanges, Bool isInclude=True, uInt dataStride=1,
Bool nrAccountsForStride=False
);
void addData(
const DataIterator& first, const MaskIterator& maskFirst,
uInt nr, uInt dataStride=1, Bool nrAccountsForStride=False,
uInt maskStride=1
);
void addData(
const DataIterator& first, const MaskIterator& maskFirst,
uInt nr, const DataRanges& dataRanges, Bool isInclude=True,
uInt dataStride=1, Bool nrAccountsForStride=False, uInt maskStride=1
);
void addData(
const DataIterator& first, const WeightsIterator& weightFirst,
uInt nr, uInt dataStride=1, Bool nrAccountsForStride=False
);
void addData(
const DataIterator& first, const WeightsIterator& weightFirst,
uInt nr, const DataRanges& dataRanges, Bool isInclude=True,
uInt dataStride=1, Bool nrAccountsForStride=False
);
void addData(
const DataIterator& first, const WeightsIterator& weightFirst,
const MaskIterator& maskFirst, uInt nr, uInt dataStride=1,
Bool nrAccountsForStride=False, uInt maskStride=1
);
void addData(
const DataIterator& first, const WeightsIterator& weightFirst,
const MaskIterator& maskFirst, uInt nr, const DataRanges& dataRanges,
Bool isInclude=True, uInt dataStride=1, Bool nrAccountsForStride=False,
uInt maskStride=1
);
// </group>
// get the algorithm that this object uses for computing stats
virtual StatisticsData::ALGORITHM algorithm() const = 0;
virtual AccumType getMedian(
std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
) = 0;
// The return value is the median; the quantiles are returned in the
// <src>quantileToValue</src> map.
virtual AccumType getMedianAndQuantiles(
std::map<Double, AccumType>& quantileToValue,
const std::set<Double>& quantiles,
std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
) = 0;
// get the median of the absolute deviation about the median of the data.
virtual AccumType getMedianAbsDevMed(
std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
) = 0;
// Purposefully not virtual. Derived classes should not implement.
AccumType getQuantile(
Double quantile, std::shared_ptr<uInt64> knownNpts=nullptr,
std::shared_ptr<AccumType> knownMin=nullptr,
std::shared_ptr<AccumType> knownMax=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
);
// get a map of quantiles to values.
virtual std::map<Double, AccumType> getQuantiles(
const std::set<Double>& quantiles, std::shared_ptr<uInt64> npts=nullptr,
std::shared_ptr<AccumType> min=nullptr, std::shared_ptr<AccumType> max=nullptr,
uInt binningThreshholdSizeBytes=4096*4096,
Bool persistSortedArray=False, uInt nBins=10000
) = 0;
// get the value of the specified statistic. Purposefully not virtual.
// Derived classes should not implement.
AccumType getStatistic(StatisticsData::STATS stat);
// certain statistics such as max and min have locations in the dataset
// associated with them. This method gets those locations. The first value
// in the returned pair is the zero-based dataset number that was set or
// added. The second value is the zero-based index in that dataset. A data
// stride of greater than one is not accounted for, so the index represents
// the actual location in the data set, independent of the dataStride value.
virtual LocationType getStatisticIndex(StatisticsData::STATS stat) = 0;
// Return statistics. Purposefully not virtual. Derived classes should not
// implement.
StatsData<AccumType> getStatistics();
// reset this object by clearing data.
virtual void reset();
// <group>
// setdata() clears any current datasets or data provider and then adds the
// specified data set as the first dataset in the (possibly new) set of data
// sets for which statistics are to be calculated. See addData() for
// parameter meanings. These methods are purposefully not virtual. Derived
// classes should not implement.
void setData(
const DataIterator& first, uInt nr, uInt dataStride=1,
Bool nrAccountsForStride=False
);
void setData(
const DataIterator& first, uInt nr, const DataRanges& dataRanges,
Bool isInclude=True, uInt dataStride=1, Bool nrAccountsForStride=False
);
void setData(
const DataIterator& first, const MaskIterator& maskFirst, uInt nr,
uInt dataStride=1, Bool nrAccountsForStride=False, uInt maskStride=1
);
void setData(
const DataIterator& first, const MaskIterator& maskFirst,
uInt nr, const DataRanges& dataRanges, Bool isInclude=True,
uInt dataStride=1, Bool nrAccountsForStride=False, uInt maskStride=1
);
void setData(
const DataIterator& first, const WeightsIterator& weightFirst, uInt nr,
uInt dataStride=1, Bool nrAccountsForStride=False
);
void setData(
const DataIterator& first, const WeightsIterator& weightFirst, uInt nr,
const DataRanges& dataRanges, Bool isInclude=True, uInt dataStride=1,
Bool nrAccountsForStride=False
);
void setData(
const DataIterator& first, const WeightsIterator& weightFirst,
const MaskIterator& maskFirst, uInt nr, uInt dataStride=1,
Bool nrAccountsForStride=False, uInt maskStride=1
);
void setData(
const DataIterator& first, const WeightsIterator& weightFirst,
const MaskIterator& maskFirst, uInt nr, const DataRanges& dataRanges,
Bool isInclude=True, uInt dataStride=1, Bool nrAccountsForStride=False,
uInt maskStride=1
);
// </group>
// instead of setting and adding data "by hand", set the data provider
// that will provide all the data sets. Calling this method will clear
// any other data sets that have previously been set or added. Method
// is virtual to allow derived classes to carry out any necessary
// specialized accounting when resetting the data provider.
virtual void setDataProvider(StatsDataProvider<CASA_STATP> *dataProvider);
// Provide guidance to algorithms by specifying a priori which statistics
// the caller would like calculated.
virtual void setStatsToCalculate(std::set<StatisticsData::STATS>& stats);
protected:
StatisticsAlgorithm();
// use copy semantics, except for the data provider which uses reference
// semantics
StatisticsAlgorithm(const StatisticsAlgorithm& other);
// use copy semantics, except for the data provider which uses reference
// semantics
StatisticsAlgorithm& operator=(const StatisticsAlgorithm& other);
// Allows derived classes to do things after data is set or added.
// Default implementation does nothing.
virtual void _addData() {}
// <group>
// These methods are purposefully not virtual. Derived classes should
// not implement.
const StatisticsDataset<CASA_STATP>& _getDataset() const {
return _dataset;
}
StatisticsDataset<CASA_STATP>& _getDataset() { return _dataset; }
// </group>
virtual AccumType _getStatistic(StatisticsData::STATS stat) = 0;
virtual StatsData<AccumType> _getStatistics() = 0;
const std::set<StatisticsData::STATS> _getStatsToCalculate() const {
return _statsToCalculate;
}
virtual const std::set<StatisticsData::STATS>&
_getUnsupportedStatistics() const {
return _unsupportedStats;
}
// Derived classes should normally call this in their constructors, if
// applicable.
void _setUnsupportedStatistics(
const std::set<StatisticsData::STATS>& stats
) {
_unsupportedStats = stats;
}
private:
std::set<StatisticsData::STATS> _statsToCalculate{}, _unsupportedStats{};
StatisticsDataset<CASA_STATP> _dataset{};
Bool _resetDataset{True};
void _resetExceptDataset();
};
}
#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/scimath/StatsFramework/StatisticsAlgorithm.tcc>
#endif
#endif
|