1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
//# Copyright (C) 2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: casa-feedback@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
//#
#ifndef SCIMATH_STATISTICSUTILITIES_TCC
#define SCIMATH_STATISTICSUTILITIES_TCC
#include <casacore/scimath/StatsFramework/StatisticsUtilities.h>
#include <casacore/casa/OS/OMP.h>
#include <casacore/casa/Utilities/GenSort.h>
#include <casacore/scimath/StatsFramework/ClassicalStatisticsData.h>
#include <iostream>
namespace casacore {
template <class AccumType>
const AccumType StatisticsUtilities<AccumType>::TWO = AccumType(2);
// For performance reasons, we ensure code is inlined rather than
// calling other functions. The performance
// benefits become important for very large datasets
#define _NLINEAR \
npts++; \
sum += datum; \
mean += (datum - mean)/npts;
#define _WLINEAR \
npts++; \
sumweights += weight; \
wsum += weight*datum; \
wmean += weight/sumweights*(datum - wmean);
#define _NQUAD \
sumsq += datum*datum; \
auto prevMean = mean; \
_NLINEAR \
nvariance += (datum - prevMean)*(datum - mean);
#define _WQUAD \
wsumsq += weight*datum*datum; \
auto prevMean = wmean; \
_WLINEAR \
wnvariance += weight*(datum - prevMean)*(datum - wmean);
#define _MAXMIN \
if (npts == 1) { \
datamax = datum; \
maxpos = location; \
datamin = datum; \
minpos = location; \
} \
else if (datum > datamax) { \
datamax = datum; \
maxpos = location; \
} \
else if (datum < datamin) { \
datamin = datum; \
minpos = location; \
}
template <class AccumType> void StatisticsUtilities<AccumType>::accumulate (
Double& npts, AccumType& sum, AccumType& mean, const AccumType& datum
) {
_NLINEAR
}
template <class AccumType> void StatisticsUtilities<AccumType>::waccumulate (
Double& npts, AccumType& sumweights, AccumType& wsum, AccumType& wmean,
const AccumType& datum, const AccumType& weight
) {
_WLINEAR
}
template <class AccumType> void StatisticsUtilities<AccumType>::accumulate (
Double& npts, AccumType& sum, AccumType& mean, AccumType& nvariance,
AccumType& sumsq, const AccumType& datum
) {
_NQUAD
}
template <class AccumType> void StatisticsUtilities<AccumType>::waccumulate (
Double& npts, AccumType& sumweights, AccumType& wsum, AccumType& wmean,
AccumType& wnvariance, AccumType& wsumsq, const AccumType& datum,
const AccumType& weight
) {
_WQUAD
}
template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::accumulate (
Double& npts, AccumType& sum, AccumType& mean, AccumType& nvariance,
AccumType& sumsq, AccumType& datamin, AccumType& datamax,
LocationType& minpos, LocationType& maxpos, const AccumType& datum,
const LocationType& location
) {
_NQUAD
_MAXMIN
}
template <class AccumType> template <class LocationType, class DataType>
void StatisticsUtilities<AccumType>::accumulate (
Double& npts, AccumType& sum, AccumType& mean, AccumType& nvariance,
AccumType& sumsq, DataType& datamin, DataType& datamax,
LocationType& minpos, LocationType& maxpos, const DataType& datum,
const LocationType& location
) {
_NQUAD
_MAXMIN
}
template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::waccumulate (
Double& npts, AccumType& sumweights, AccumType& wsum, AccumType& wmean,
AccumType& wnvariance, AccumType& wsumsq, AccumType& datamin,
AccumType& datamax, LocationType& minpos, LocationType& maxpos,
const AccumType& datum, const AccumType& weight,
const LocationType& location
) {
_WQUAD
_MAXMIN
}
template <class AccumType> template <class LocationType>
Bool StatisticsUtilities<AccumType>::doMax(
AccumType& datamax, LocationType& maxpos, Bool isFirst,
const AccumType& datum, const LocationType& location
) {
if (isFirst || datum > datamax) {
datamax = datum;
maxpos = location;
return True;
}
return False;
}
template <class AccumType> template <class LocationType>
Bool StatisticsUtilities<AccumType>::doMin(
AccumType& datamin, LocationType& minpos, Bool isFirst,
const AccumType& datum, const LocationType& location
) {
if (isFirst || datum < datamin) {
datamin = datum;
minpos = location;
return True;
}
return False;
}
#define _NQUADSYM \
npts += 2; \
auto reflect = TWO*center - datum; \
sumsq += datum*datum + reflect*reflect; \
auto diff = datum - center; \
nvariance += TWO*diff*diff;
#define _WQUADSYM \
npts += 2; \
sumweights += TWO*weight; \
auto reflect = TWO*center - datum; \
wsumsq += weight*(datum*datum + reflect*reflect); \
auto diff = datum - center; \
wnvariance += TWO*weight*diff*diff;
#define _MAXMINSYM \
if (npts == 2) { \
datamax = datum; \
maxpos = location; \
datamin = datum; \
minpos = location; \
} \
else if (datum > datamax) { \
datamax = datum; \
maxpos = location; \
} \
else if (datum < datamin) { \
datamin = datum; \
minpos = location; \
}
template <class AccumType> void StatisticsUtilities<AccumType>::accumulateSym (
Double& npts, AccumType& nvariance, AccumType& sumsq,
const AccumType& datum, const AccumType& center
) {
_NQUADSYM
}
template <class AccumType> void StatisticsUtilities<AccumType>::waccumulateSym (
Double& npts, AccumType& sumweights, AccumType& wnvariance,
AccumType& wsumsq, const AccumType& datum, const AccumType& weight,
const AccumType& center
) {
_WQUADSYM
}
template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::accumulateSym (
Double& npts, AccumType& nvariance, AccumType& sumsq, AccumType& datamin,
AccumType& datamax, LocationType& minpos, LocationType& maxpos,
const AccumType& datum, const LocationType& location,
const AccumType& center
) {
_NQUADSYM
_MAXMINSYM
}
template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::waccumulateSym (
Double& npts, AccumType& sumweights, AccumType& wnvariance,
AccumType& wsumsq, AccumType& datamin, AccumType& datamax,
LocationType& minpos, LocationType& maxpos, const AccumType& datum,
const AccumType& weight, const LocationType& location,
const AccumType& center
) {
_WQUADSYM
_MAXMINSYM
}
template <class AccumType>
Bool StatisticsUtilities<AccumType>::includeDatum(
const AccumType& datum, typename DataRanges::const_iterator beginRange,
typename DataRanges::const_iterator endRange, Bool isInclude
) {
// can't use a lambda because the loop can end early via return
for (auto iter=beginRange; iter!=endRange; ++iter) {
if (datum >= iter->first && datum <= iter->second) {
return isInclude;
}
}
return ! isInclude;
}
template <class AccumType>
void StatisticsUtilities<AccumType>::convertToAbsDevMedArray(
DataArray& myArray, AccumType median
) {
for_each(myArray.begin(), myArray.end(), [median](AccumType& datum) {
datum = abs(datum - median);
});
}
template <class AccumType>
std::map<uInt64, AccumType> StatisticsUtilities<AccumType>::indicesToValues(
DataArray& myArray, const std::set<uInt64>& indices
) {
auto arySize = myArray.size();
ThrowIf(
*indices.rbegin() >= arySize,
"Logic Error: Index " + String::toString(*indices.rbegin()) + " is too "
"large. The sorted array has size " + String::toString(arySize)
);
std::map<uInt64, AccumType> indexToValuesMap;
uInt64 lastIndex = 0;
for_each(
indices.cbegin(), indices.cend(),
[&myArray, &lastIndex, &arySize](uInt64 index) {
GenSort<AccumType>::kthLargest(
&myArray[lastIndex], arySize - lastIndex, index - lastIndex
);
lastIndex = index;
});
for_each(
indices.cbegin(), indices.cend(),
[&myArray, &indexToValuesMap](uInt64 index) {
indexToValuesMap[index] = myArray[index];
});
return indexToValuesMap;
}
template <class AccumType>
void StatisticsUtilities<AccumType>::mergeResults(
std::vector<BinCountArray>& bins,
std::vector<std::shared_ptr<AccumType>>& sameVal, std::vector<Bool>& allSame,
const std::unique_ptr<std::vector<BinCountArray>[]>& tBins,
const std::unique_ptr<std::vector<std::shared_ptr<AccumType>>[]>& tSameVal,
const std::unique_ptr<std::vector<Bool>[]>& tAllSame, uInt nThreadsMax
) {
// merge results from individual threads (tBins, tSameVal, tAllSame)
// into single data structures (bins, sameVal, allSame)
for (uInt tid=0; tid<nThreadsMax; ++tid) {
auto idx8 = ClassicalStatisticsData::CACHE_PADDING*tid;
auto titer = tBins[idx8].cbegin();
for_each(bins.begin(), bins.end(), [&titer](BinCountArray& bcArray) {
std::transform(
bcArray.begin(), bcArray.end(), titer->begin(),
bcArray.begin(), std::plus<Int64>()
);
++titer;
});
//typename std::vector<std::shared_ptr<AccumType>>::iterator siter;
//auto send = sameVal.end();
std::vector<Bool>::iterator aiter = allSame.begin();
auto viter = tSameVal[idx8].cbegin();
auto witer = tAllSame[idx8].cbegin();
for_each(
sameVal.begin(), sameVal.end(),
[&aiter, &viter, &witer](std::shared_ptr<AccumType>& svalue) {
if (! *aiter) {
// won't have the same values, do nothing
}
if (*witer && *aiter) {
if (
!*viter
|| (svalue && *svalue == *(*viter))
) {
// no unflagged values in this chunk or both
// have the all the same values, do nothing
}
else if (!svalue) {
svalue.reset(new AccumType(*(*viter)));
}
else {
// both are not null, and they do not have the same values
svalue.reset();
*aiter = False;
}
}
else {
// *aiter = True, *witer = False, all values are not the same
svalue.reset();
*aiter = False;
}
++aiter;
++viter;
++witer;
});
}
}
template <class AccumType>
StatsData<AccumType> StatisticsUtilities<AccumType>::combine(
const std::vector<StatsData<AccumType>>& stats
) {
auto n = stats.size();
auto res = n == 1 ? stats[0] : initializeStatsData<AccumType>();
if (n == 0) {
// null set
return res;
}
static const AccumType zero = 0;
static const AccumType one = 1;
if (n > 1) {
for_each(
stats.cbegin(), stats.cend(),
[&res](const StatsData<AccumType>& s) {
if (s.max && (!res.max || *(s.max) > *res.max)) {
// pointer copy
res.max = s.max;
res.maxpos = s.maxpos;
}
if (s.min && (!res.min || *(s.min) < *res.min)) {
// pointer copy
res.min = s.min;
res.minpos = s.minpos;
}
auto sumweights = s.sumweights + res.sumweights;
auto mean = sumweights == zero ? zero
: (s.sumweights*s.mean + res.sumweights*res.mean)/sumweights;
auto nvariance = zero;
if (sumweights > zero) {
auto diff1 = s.mean - mean;
auto diff2 = res.mean - mean;
nvariance = s.nvariance + res.nvariance
+ s.sumweights*diff1*diff1 + res.sumweights*diff2*diff2;
}
res.masked = s.masked || res.masked;
res.mean = mean;
res.npts += s.npts;
res.nvariance = nvariance;
res.sum += s.sum;
res.sumsq += s.sumsq;
res.sumweights = sumweights;
res.weighted = s.weighted || res.weighted;
});
}
// In the n = 1 case, the stats which are computed from other stats are
// not guaranteed to be in stats[0], so compute and fill them here, also
// compute them for the n > 1 case
// in any reasonable statistical dataset, sumsq should be zero if
// sumweights is 0
res.variance = res.sumweights > one
? res.nvariance/(res.sumweights - one) : 0;
res.rms = res.sumweights == zero ? zero : sqrt(res.sumsq/res.sumweights);
res.stddev = sqrt(res.variance);
return res;
}
template <class AccumType>
template <class DataIterator, class MaskIterator, class WeightsIterator>
uInt StatisticsUtilities<AccumType>::nThreadsMax(
const StatsDataProvider<CASA_STATP> *const dataProvider
) {
auto nthr = OMP::nMaxThreads();
if (nthr > 1 && dataProvider) {
auto n = dataProvider->getNMaxThreads();
if (n > 0) {
return n;
}
}
return nthr;
}
template <class AccumType>
uInt StatisticsUtilities<AccumType>::threadIdx() {
#ifdef _OPENMP
uInt tid = omp_get_thread_num();
#else
uInt tid = 0;
#endif
return tid * ClassicalStatisticsData::CACHE_PADDING;
}
}
#endif
|