File: StatisticsUtilities.tcc

package info (click to toggle)
casacore 3.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 51,912 kB
  • sloc: cpp: 471,569; fortran: 16,372; ansic: 7,416; yacc: 4,714; lex: 2,346; sh: 1,865; python: 629; perl: 531; sed: 499; csh: 201; makefile: 32
file content (438 lines) | stat: -rw-r--r-- 14,037 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//# Copyright (C) 2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: casa-feedback@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#

#ifndef SCIMATH_STATISTICSUTILITIES_TCC
#define SCIMATH_STATISTICSUTILITIES_TCC

#include <casacore/scimath/StatsFramework/StatisticsUtilities.h>

#include <casacore/casa/OS/OMP.h>
#include <casacore/casa/Utilities/GenSort.h>
#include <casacore/scimath/StatsFramework/ClassicalStatisticsData.h>

#include <iostream>

namespace casacore {

template <class AccumType>
const AccumType StatisticsUtilities<AccumType>::TWO = AccumType(2);

// For performance reasons, we ensure code is inlined rather than
// calling other functions. The performance
// benefits become important for very large datasets

#define _NLINEAR \
	npts++; \
	sum += datum; \
	mean += (datum - mean)/npts;

#define _WLINEAR \
	npts++; \
	sumweights += weight; \
	wsum += weight*datum; \
	wmean += weight/sumweights*(datum - wmean);

#define _NQUAD \
	sumsq += datum*datum; \
	auto prevMean = mean; \
	_NLINEAR \
	nvariance += (datum - prevMean)*(datum - mean);

#define _WQUAD \
	wsumsq += weight*datum*datum; \
	auto prevMean = wmean; \
	_WLINEAR \
	wnvariance += weight*(datum - prevMean)*(datum - wmean);

#define _MAXMIN \
	if (npts == 1) { \
		datamax = datum; \
		maxpos = location; \
		datamin = datum; \
		minpos = location; \
	} \
	else if (datum > datamax) { \
		datamax = datum; \
		maxpos = location; \
	} \
	else if (datum < datamin) { \
		datamin = datum; \
		minpos = location; \
	}

template <class AccumType> void StatisticsUtilities<AccumType>::accumulate (
	Double& npts, AccumType& sum, AccumType& mean, const AccumType& datum
) {
	_NLINEAR
}

template <class AccumType> void StatisticsUtilities<AccumType>::waccumulate (
	Double& npts, AccumType& sumweights, AccumType& wsum, AccumType& wmean,
	const AccumType& datum, const AccumType& weight
) {
	_WLINEAR
}

template <class AccumType> void StatisticsUtilities<AccumType>::accumulate (
	Double& npts, AccumType& sum, AccumType& mean, AccumType& nvariance,
	AccumType& sumsq, const AccumType& datum
) {
	_NQUAD
}

template <class AccumType> void StatisticsUtilities<AccumType>::waccumulate (
	Double& npts, AccumType& sumweights, AccumType& wsum, AccumType& wmean,
	AccumType& wnvariance, AccumType& wsumsq, const AccumType& datum,
	const AccumType& weight
) {
	_WQUAD
}

template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::accumulate (
	Double& npts, AccumType& sum, AccumType& mean, AccumType& nvariance,
	AccumType& sumsq, AccumType& datamin, AccumType& datamax,
	LocationType& minpos, LocationType& maxpos, const AccumType& datum,
	const LocationType& location
) {
	_NQUAD
	_MAXMIN
}

template <class AccumType> template <class LocationType, class DataType>
void StatisticsUtilities<AccumType>::accumulate (
    Double& npts, AccumType& sum, AccumType& mean, AccumType& nvariance,
    AccumType& sumsq, DataType& datamin, DataType& datamax,
    LocationType& minpos, LocationType& maxpos, const DataType& datum,
    const LocationType& location
) {
    _NQUAD
    _MAXMIN
}

template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::waccumulate (
	Double& npts, AccumType& sumweights, AccumType& wsum, AccumType& wmean,
	AccumType& wnvariance, AccumType& wsumsq, AccumType& datamin,
	AccumType& datamax, LocationType& minpos, LocationType& maxpos,
	const AccumType& datum, const AccumType& weight,
	const LocationType& location
) {
	_WQUAD
	_MAXMIN
}

template <class AccumType> template <class LocationType>
Bool StatisticsUtilities<AccumType>::doMax(
	AccumType& datamax, LocationType& maxpos, Bool isFirst,
	const AccumType& datum, const LocationType& location
) {
	if (isFirst || datum > datamax) {
		datamax = datum;
		maxpos = location;
		return True;
	}
	return False;
}

template <class AccumType> template <class LocationType>
Bool StatisticsUtilities<AccumType>::doMin(
	AccumType& datamin, LocationType& minpos, Bool isFirst,
	const AccumType& datum, const LocationType& location
) {
	if (isFirst || datum < datamin) {
		datamin = datum;
		minpos = location;
		return True;
	}
	return False;
}

#define _NQUADSYM \
	npts += 2; \
	auto reflect = TWO*center - datum; \
	sumsq += datum*datum + reflect*reflect; \
	auto diff = datum - center; \
	nvariance += TWO*diff*diff;

#define _WQUADSYM \
	npts += 2; \
	sumweights += TWO*weight; \
	auto reflect = TWO*center - datum; \
	wsumsq += weight*(datum*datum + reflect*reflect); \
	auto diff = datum - center; \
	wnvariance += TWO*weight*diff*diff;

#define _MAXMINSYM \
	if (npts == 2) { \
		datamax = datum; \
		maxpos = location; \
		datamin = datum; \
		minpos = location; \
	} \
	else if (datum > datamax) { \
		datamax = datum; \
		maxpos = location; \
	} \
	else if (datum < datamin) { \
		datamin = datum; \
		minpos = location; \
	}

template <class AccumType> void StatisticsUtilities<AccumType>::accumulateSym (
	Double& npts, AccumType& nvariance, AccumType& sumsq,
	const AccumType& datum, const AccumType& center
) {
	_NQUADSYM
}

template <class AccumType> void StatisticsUtilities<AccumType>::waccumulateSym (
	Double& npts, AccumType& sumweights, AccumType& wnvariance,
	AccumType& wsumsq, const AccumType& datum, const AccumType& weight,
	const AccumType& center
) {
	_WQUADSYM
}

template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::accumulateSym (
	Double& npts, AccumType& nvariance, AccumType& sumsq, AccumType& datamin,
	AccumType& datamax, LocationType& minpos, LocationType& maxpos,
	const AccumType& datum, const LocationType& location,
	const AccumType& center
) {
	_NQUADSYM
	_MAXMINSYM
}

template <class AccumType> template <class LocationType>
void StatisticsUtilities<AccumType>::waccumulateSym (
	Double& npts, AccumType& sumweights, AccumType& wnvariance,
	AccumType& wsumsq, AccumType& datamin, AccumType& datamax,
	LocationType& minpos, LocationType& maxpos, const AccumType& datum,
	const AccumType& weight, const LocationType& location,
	const AccumType& center
) {
	_WQUADSYM
	_MAXMINSYM
}

template <class AccumType>
Bool StatisticsUtilities<AccumType>::includeDatum(
    const AccumType& datum, typename DataRanges::const_iterator beginRange,
    typename DataRanges::const_iterator endRange, Bool isInclude
) {
    // can't use a lambda because the loop can end early via return
    for (auto iter=beginRange; iter!=endRange; ++iter) {
        if (datum >= iter->first && datum <= iter->second) {
            return isInclude;
        }
    }
    return ! isInclude;
}

template <class AccumType>
void StatisticsUtilities<AccumType>::convertToAbsDevMedArray(
    DataArray& myArray, AccumType median
) {
    for_each(myArray.begin(), myArray.end(), [median](AccumType& datum) {
        datum = abs(datum - median);
    });
}

template <class AccumType>
std::map<uInt64, AccumType> StatisticsUtilities<AccumType>::indicesToValues(
    DataArray& myArray, const std::set<uInt64>& indices
) {
    auto arySize = myArray.size();
    ThrowIf(
        *indices.rbegin() >= arySize,
        "Logic Error: Index " + String::toString(*indices.rbegin()) + " is too "
        "large. The sorted array has size " + String::toString(arySize)
    );
    std::map<uInt64, AccumType> indexToValuesMap;
    uInt64 lastIndex = 0;
    for_each(
        indices.cbegin(), indices.cend(),
        [&myArray, &lastIndex, &arySize](uInt64 index) {
        GenSort<AccumType>::kthLargest(
            &myArray[lastIndex], arySize - lastIndex, index - lastIndex
        );
        lastIndex = index;
    });
    for_each(
        indices.cbegin(), indices.cend(),
        [&myArray, &indexToValuesMap](uInt64 index) {
        indexToValuesMap[index] = myArray[index];
    });
    return indexToValuesMap;
}

template <class AccumType>
void StatisticsUtilities<AccumType>::mergeResults(
    std::vector<BinCountArray>& bins,
    std::vector<std::shared_ptr<AccumType>>& sameVal, std::vector<Bool>& allSame,
    const std::unique_ptr<std::vector<BinCountArray>[]>& tBins,
    const std::unique_ptr<std::vector<std::shared_ptr<AccumType>>[]>& tSameVal,
    const std::unique_ptr<std::vector<Bool>[]>& tAllSame, uInt nThreadsMax
) {
    // merge results from individual threads (tBins, tSameVal, tAllSame)
    // into single data structures (bins, sameVal, allSame)
    for (uInt tid=0; tid<nThreadsMax; ++tid) {
        auto idx8 = ClassicalStatisticsData::CACHE_PADDING*tid;
        auto titer = tBins[idx8].cbegin();
        for_each(bins.begin(), bins.end(), [&titer](BinCountArray& bcArray) {
            std::transform(
                bcArray.begin(), bcArray.end(), titer->begin(),
                bcArray.begin(), std::plus<Int64>()
            );
            ++titer;
        });
        //typename std::vector<std::shared_ptr<AccumType>>::iterator siter;
        //auto send = sameVal.end();
        std::vector<Bool>::iterator aiter = allSame.begin();
        auto viter = tSameVal[idx8].cbegin();
        auto witer = tAllSame[idx8].cbegin();
        for_each(
            sameVal.begin(), sameVal.end(),
            [&aiter, &viter, &witer](std::shared_ptr<AccumType>& svalue) {
            if (! *aiter) {
                // won't have the same values, do nothing
            }
            if (*witer && *aiter) {
                if (
                    !*viter
                    || (svalue && *svalue == *(*viter))
                ) {
                    // no unflagged values in this chunk or both
                    // have the all the same values, do nothing
                }
                else if (!svalue) {
                    svalue.reset(new AccumType(*(*viter)));
                }
                else {
                    // both are not null, and they do not have the same values
                    svalue.reset();
                    *aiter = False;
                }
            }
            else {
                // *aiter = True, *witer = False, all values are not the same
                svalue.reset();
                *aiter = False;
            }
            ++aiter;
            ++viter;
            ++witer;
        });
    }
}

template <class AccumType>
StatsData<AccumType> StatisticsUtilities<AccumType>::combine(
    const std::vector<StatsData<AccumType>>& stats
) {
    auto n = stats.size();
    auto res = n == 1 ? stats[0] : initializeStatsData<AccumType>();
    if (n == 0) {
        // null set
        return res;
    }
    static const AccumType zero = 0;
    static const AccumType one = 1;
    if (n > 1) {
        for_each(
            stats.cbegin(), stats.cend(),
            [&res](const StatsData<AccumType>& s) {
            if (s.max && (!res.max || *(s.max) > *res.max)) {
                // pointer copy
                res.max = s.max;
                res.maxpos = s.maxpos;
            }
            if (s.min && (!res.min || *(s.min) < *res.min)) {
                // pointer copy
                res.min = s.min;
                res.minpos = s.minpos;
            }
            auto sumweights = s.sumweights + res.sumweights;
            auto mean = sumweights == zero ? zero
                : (s.sumweights*s.mean + res.sumweights*res.mean)/sumweights;
            auto nvariance = zero;
            if (sumweights > zero) {
                auto diff1 = s.mean - mean;
                auto diff2 = res.mean - mean;
                nvariance = s.nvariance + res.nvariance
                    + s.sumweights*diff1*diff1 + res.sumweights*diff2*diff2;
            }
            res.masked = s.masked || res.masked;
            res.mean = mean;
            res.npts += s.npts;
            res.nvariance = nvariance;
            res.sum += s.sum;
            res.sumsq += s.sumsq;
            res.sumweights = sumweights;
            res.weighted = s.weighted || res.weighted;
        });
    }
    // In the n = 1 case, the stats which are computed from other stats are
    // not guaranteed to be in stats[0], so compute and fill them here, also
    // compute them for the n > 1 case
    // in any reasonable statistical dataset, sumsq should be zero if
    // sumweights is 0
    res.variance = res.sumweights > one
        ? res.nvariance/(res.sumweights - one) : 0;
    res.rms = res.sumweights == zero ? zero : sqrt(res.sumsq/res.sumweights);
    res.stddev = sqrt(res.variance);
    return res;
}

template <class AccumType>
template <class DataIterator, class MaskIterator, class WeightsIterator>
uInt StatisticsUtilities<AccumType>::nThreadsMax(
    const StatsDataProvider<CASA_STATP> *const dataProvider
) {
    auto nthr = OMP::nMaxThreads();
    if (nthr > 1 && dataProvider) {
        auto n = dataProvider->getNMaxThreads();
        if (n > 0) {
            return n;
        }
    }
    return nthr;
}

template <class AccumType>
uInt StatisticsUtilities<AccumType>::threadIdx() {
#ifdef _OPENMP
    uInt tid = omp_get_thread_num();
#else
    uInt tid = 0;
#endif
    return tid * ClassicalStatisticsData::CACHE_PADDING;
}

}

#endif