File: simulator.py

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (65 lines) | stat: -rw-r--r-- 2,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#
#     This file is part of CasADi.
#
#     CasADi -- A symbolic framework for dynamic optimization.
#     Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,
#                             KU Leuven. All rights reserved.
#     Copyright (C) 2011-2014 Greg Horn
#
#     CasADi is free software; you can redistribute it and/or
#     modify it under the terms of the GNU Lesser General Public
#     License as published by the Free Software Foundation; either
#     version 3 of the License, or (at your option) any later version.
#
#     CasADi is distributed in the hope that it will be useful,
#     but WITHOUT ANY WARRANTY; without even the implied warranty of
#     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#     Lesser General Public License for more details.
#
#     You should have received a copy of the GNU Lesser General Public
#     License along with CasADi; if not, write to the Free Software
#     Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

#
# Simulator
# =====================

from casadi import *
from numpy import *
from pylab import *

# We will investigate the working of Simulator with the help of the parametrically exited Duffing equation:
#
# $\ddot{u}+\dot{u}-\epsilon (2 \mu \dot{u}+\alpha u^3+2 k u \cos(\Omega t))$ with $\Omega = 2 + \epsilon \sigma$.

t = SX.sym('t')

u = SX.sym('u') 
v = SX.sym('v') 
states = vertcat(u,v)

eps   = SX.sym('eps')
mu    = SX.sym('mu')
alpha = SX.sym('alpha')
k     = SX.sym('k')
sigma = SX.sym('sigma')
Omega = 2 + eps*sigma

params = vertcat(eps,mu,alpha,k,sigma)
rhs    = vertcat(v,-u-eps*(2*mu*v+alpha*u**3+2*k*u*cos(Omega*t)))

# We will simulate over 50 seconds, 1000 timesteps.

dae={'x':states, 'p':params, 't':t, 'ode':rhs}
ts = linspace(0, 50, 1000)
integrator = integrator('integrator', 'cvodes', dae, {'grid':ts, 'output_t0':True})

sol = integrator(x0=[1,0], p=[0.1,0.1,0.1,0.3,0.1])

# Plot the solution

plot(array(sol['xf'])[0,:], array(sol['xf'])[1,:])
xlabel('u')
ylabel('u_dot')
show()