File: NLPImplicitSolver.py

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (95 lines) | stat: -rw-r--r-- 2,822 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#
#     This file is part of CasADi.
#
#     CasADi -- A symbolic framework for dynamic optimization.
#     Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,
#                             KU Leuven. All rights reserved.
#     Copyright (C) 2011-2014 Greg Horn
#
#     CasADi is free software; you can redistribute it and/or
#     modify it under the terms of the GNU Lesser General Public
#     License as published by the Free Software Foundation; either
#     version 3 of the License, or (at your option) any later version.
#
#     CasADi is distributed in the hope that it will be useful,
#     but WITHOUT ANY WARRANTY; without even the implied warranty of
#     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#     Lesser General Public License for more details.
#
#     You should have received a copy of the GNU Lesser General Public
#     License along with CasADi; if not, write to the Free Software
#     Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

#
# NLPImplicitSolver
# =====================

from casadi import *
from numpy import *
from pylab import *

# We will investigate the working of rootfinder with the help of the parametrically exited Duffing equation.
#
# $\ddot{u}+\dot{u}-\epsilon (2 \mu \dot{u}+\alpha u^3+2 k u \cos(\Omega t))$ with $\Omega = 2 + \epsilon \sigma$. \\
#
# The first order solution is $u(t)=a \cos(\frac{1}{2} \Omega t-\frac{1}{2} \gamma)$ with the modulation equations: \\
# $\frac{da}{d\epsilon t} = - \left[ \mu a + \frac{1}{2} k a \sin \gamma \right]$ \\
# $a \frac{d\gamma}{d\epsilon t} = - \left[ -\sigma a + \frac{3}{4} \alpha a^3 + k a \cos \gamma \right]$ \\
#
# We seek the stationair solution to these modulation equations.

# Parameters

eps   = SX.sym("eps")
mu    = SX.sym("mu")
alpha = SX.sym("alpha")
k     = SX.sym("k")
sigma = SX.sym("sigma")
params = [eps,mu,alpha,k,sigma]

# Variables

a     = SX.sym("a")
gamma = SX.sym("gamma")

# Equations

res0 = mu*a+1.0/2*k*a*sin(gamma)
res1 = -sigma * a + 3.0/4*alpha*a**3+k*a*cos(gamma)

# Numerical values

sigma_ = 0.1
alpha_ = 0.1
k_     = 0.2
params_ = [0.1,0.1,alpha_,k_,sigma_]

# We create a NLPImplicitSolver instance

f=Function("f", [vertcat(a, gamma), vertcat(*params)], [vertcat(res0, res1)])
opts = {}
opts["nlpsol"] = "ipopt"
opts["nlpsol_options"] = {"ipopt.tol":1e-14}
s=rootfinder("s", "nlpsol", f, opts)

# Initialize [$a$,$\gamma$] with a guess and solve

x_ = s([1,-1], params_)
print("Solution = ", x_)

# Compare with the analytic solution:

x = [sqrt(4.0/3*sigma_/alpha_),-0.5*pi]
print("Reference solution = ", x)

# We show that the residual is indeed (close to) zero

residual = f(x_, params_)
print("residual = ", residual)

for i in range(1):
  assert(abs(x_[i]-x[i])<1e-6)

# Solver statistics

print(s.stats())