1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/*
* MIT No Attribution
*
* Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/** \brief Writing a multiple shooting code from scratch
This example demonstrates how to write a simple, yet powerful multiple shooting code from
scratch using CasADi. For clarity, the code below uses a simple formulation with only states
and controls, and no path constrants. It relies on CasADi machinery to keep track of sparsity,
formulate ODE sensitivity equations and build up the Jacobian of the NLP constraint function.
By extending the code below, it should be possible for a user to solve ever more complex
problems. For example, one can easily make a multi-stage formulation by simply allocating
another integrator instance and use the two integrators instances for different shooting nodes.
By replacing the explicit CVodes integrator with the fully-implicit IDAS integrator, one can
solve optimal control problems in differential-algebraic equations.
\author Joel Andersson
\date 2011-2012
*/
// CasADi core
#include <casadi/casadi.hpp>
using namespace casadi;
int main(){
// Declare variables
SX u = SX::sym("u"); // control
SX r = SX::sym("r"), s = SX::sym("s"); // states
SX x = vertcat(r,s);
// Number of differential states
int nx = x.size1();
// Number of controls
int nu = u.size1();
// Bounds and initial guess for the control
std::vector<double> u_min = { -0.75 };
std::vector<double> u_max = { 1.0 };
std::vector<double> u_init = { 0.0 };
// Bounds and initial guess for the state
std::vector<double> x0_min = { 0, 1 };
std::vector<double> x0_max = { 0, 1 };
std::vector<double> x_min = {-inf, -inf };
std::vector<double> x_max = { inf, inf };
std::vector<double> xf_min = { 0, 0 };
std::vector<double> xf_max = { 0, 0 };
std::vector<double> x_init = { 0, 0 };
// Final time
double tf = 20.0;
// Number of shooting nodes
int ns = 50;
// ODE right hand side and quadrature
SX ode = vertcat((1 - s*s)*r - s + u, r);
SX quad = r*r + s*s + u*u;
SXDict dae = {{"x", x}, {"p", u}, {"ode", ode}, {"quad", quad}};
// Create an integrator (CVodes)
Function F = integrator("integrator", "cvodes", dae, 0, tf/ns);
// Total number of NLP variables
int NV = nx*(ns+1) + nu*ns;
// Declare variable vector for the NLP
MX V = MX::sym("V",NV);
// NLP variable bounds and initial guess
std::vector<double> v_min,v_max,v_init;
// Offset in V
int offset=0;
// State at each shooting node and control for each shooting interval
std::vector<MX> X, U;
for(int k=0; k<ns; ++k){
// Local state
X.push_back( V.nz(Slice(offset,offset+nx)));
if(k==0){
v_min.insert(v_min.end(), x0_min.begin(), x0_min.end());
v_max.insert(v_max.end(), x0_max.begin(), x0_max.end());
} else {
v_min.insert(v_min.end(), x_min.begin(), x_min.end());
v_max.insert(v_max.end(), x_max.begin(), x_max.end());
}
v_init.insert(v_init.end(), x_init.begin(), x_init.end());
offset += nx;
// Local control
U.push_back( V.nz(Slice(offset,offset+nu)));
v_min.insert(v_min.end(), u_min.begin(), u_min.end());
v_max.insert(v_max.end(), u_max.begin(), u_max.end());
v_init.insert(v_init.end(), u_init.begin(), u_init.end());
offset += nu;
}
// State at end
X.push_back(V.nz(Slice(offset,offset+nx)));
v_min.insert(v_min.end(), xf_min.begin(), xf_min.end());
v_max.insert(v_max.end(), xf_max.begin(), xf_max.end());
v_init.insert(v_init.end(), x_init.begin(), x_init.end());
offset += nx;
// Make sure that the size of the variable vector is consistent with the number of variables that we have referenced
casadi_assert(offset==NV, "");
// Objective function
MX J = 0;
//Constraint function and bounds
std::vector<MX> g;
// Loop over shooting nodes
for(int k=0; k<ns; ++k){
// Create an evaluation node
MXDict I_out = F(MXDict{{"x0", X[k]}, {"p", U[k]}});
// Save continuity constraints
g.push_back( I_out.at("xf") - X[k+1] );
// Add objective function contribution
J += I_out.at("qf");
}
// NLP
MXDict nlp = {{"x", V}, {"f", J}, {"g", vertcat(g)}};
// Set options
Dict opts;
opts["ipopt.tol"] = 1e-5;
opts["ipopt.max_iter"] = 100;
// Create an NLP solver and buffers
Function solver = nlpsol("nlpsol", "ipopt", nlp, opts);
std::map<std::string, DM> arg, res;
// Bounds and initial guess
arg["lbx"] = v_min;
arg["ubx"] = v_max;
arg["lbg"] = 0;
arg["ubg"] = 0;
arg["x0"] = v_init;
// Solve the problem
res = solver(arg);
// Optimal solution of the NLP
std::vector<double> V_opt(res.at("x"));
// Get the optimal state trajectory
std::vector<double> r_opt(ns+1), s_opt(ns+1);
for(int i=0; i<=ns; ++i){
r_opt[i] = V_opt.at(i*(nx+1));
s_opt[i] = V_opt.at(1+i*(nx+1));
}
std::cout << "r_opt = " << std::endl << r_opt << std::endl;
std::cout << "s_opt = " << std::endl << s_opt << std::endl;
// Get the optimal control
std::vector<double> u_opt(ns);
for(int i=0; i<ns; ++i){
u_opt[i] = V_opt.at(nx + i*(nx+1));
}
std::cout << "u_opt = " << std::endl << u_opt << std::endl;
return 0;
}
|