File: parametric_nlp.cpp

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (112 lines) | stat: -rw-r--r-- 3,944 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*
 *    MIT No Attribution
 *
 *    Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
 *
 *    Permission is hereby granted, free of charge, to any person obtaining a copy of this
 *    software and associated documentation files (the "Software"), to deal in the Software
 *    without restriction, including without limitation the rights to use, copy, modify,
 *    merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
 *    permit persons to whom the Software is furnished to do so.
 *
 *    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 *    INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 *    PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 *    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *    OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 *    SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */


#include <iostream>
#include <fstream>
#include <ctime>
#include <iomanip>
#include <casadi/casadi.hpp>

using namespace casadi;
/**
 *  Example program demonstrating parametric NLPs in CasADi
 *  Note that there is currently no support for parametric sensitivities via this feature (although it would make a lot of sense).
 *  For parametric sensitivities, see the parametric_sensitivities.cpp example which calculates sensitivitied via the sIPOPT extension
 *  to IPOPT.
 *
 *  Joel Andersson, KU Leuven 2012
 */

int main(){
  /** Test problem (Ganesh & Biegler, A reduced Hessian strategy for sensitivity analysis of optimal flowsheets, AIChE 33, 1987, pp. 282-296)
   *
   *    min     x1^2 + x2^2 + x3^2
   *    s.t.    6*x1 + 3&x2 + 2*x3 - pi = 0
   *            p2*x1 + x2 - x3 - 1 = 0
   *            x1, x2, x3 >= 0
   *
   */

  // Optimization variables
  SX x = SX::sym("x", 3);

  // Parameters
  SX p = SX::sym("p", 2);

  // Objective
  SX f = x(0)*x(0) + x(1)*x(1) + x(2)*x(2);

  // Constraints
  SX g = vertcat(
       6*x(0) + 3*x(1) + 2*x(2) - p(0),
    p(1)*x(0) +   x(1) -   x(2) -    1
  );

  // Initial guess and bounds for the optimization variables
  std::vector<double> x0  = {0.15, 0.15, 0.00};
  std::vector<double> lbx = {0.00, 0.00, 0.00};
  std::vector<double> ubx = { inf,  inf,  inf};

  // Nonlinear bounds
  std::vector<double> lbg = {0.00, 0.00};
  std::vector<double> ubg = {0.00, 0.00};

  // Original parameter values
  std::vector<double> p0  = {5.00, 1.00};

  // NLP
  SXDict nlp = {{"x", x}, {"p", p}, {"f", f}, {"g", g}};

  // Create NLP solver and buffers
  Function solver = nlpsol("solver", "ipopt", nlp);
  std::map<std::string, DM> arg, res;

  // Solve the NLP
  arg["lbx"] = lbx;
  arg["ubx"] = ubx;
  arg["lbg"] = lbg;
  arg["ubg"] = ubg;
  arg["x0"] = x0;
  arg["p"] = p0;
  res = solver(arg);

  // Print the solution
  std::cout << "-----" << std::endl;
  std::cout << "Optimal solution for p = " << arg.at("p") << ":" << std::endl;
  std::cout << std::setw(30) << "Objective: " << res.at("f") << std::endl;
  std::cout << std::setw(30) << "Primal solution: " << res.at("x") << std::endl;
  std::cout << std::setw(30) << "Dual solution (x): " << res.at("lam_x") << std::endl;
  std::cout << std::setw(30) << "Dual solution (g): " << res.at("lam_g") << std::endl;

  // Change the parameter and resolve
  arg["p"] = 4.5;
  res = solver(arg);

  // Print the new solution
  std::cout << "-----" << std::endl;
  std::cout << "Optimal solution for p = " << arg.at("p") << ":" << std::endl;
  std::cout << std::setw(30) << "Objective: " << res.at("f") << std::endl;
  std::cout << std::setw(30) << "Primal solution: " << res.at("x") << std::endl;
  std::cout << std::setw(30) << "Dual solution (x): " << res.at("lam_x") << std::endl;
  std::cout << std::setw(30) << "Dual solution (g): " << res.at("lam_g") << std::endl;

  return 0;
}