1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/*
* MIT No Attribution
*
* Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <iostream>
#include <casadi/casadi.hpp>
using namespace casadi;
// Declare solvers to be loaded manually
extern "C" void casadi_load_integrator_cvodes();
extern "C" void casadi_load_integrator_idas();
extern "C" void casadi_load_integrator_rk();
extern "C" void casadi_load_nlpsol_ipopt();
extern "C" void casadi_load_nlpsol_scpgen();
bool sundials_integrator = true;
bool explicit_integrator = false;
bool lifted_newton = false;
int main(){
// Load integrators manually
casadi_load_integrator_cvodes();
casadi_load_integrator_idas();
casadi_load_integrator_rk();
casadi_load_nlpsol_ipopt();
casadi_load_nlpsol_scpgen();
// Time length
double T = 10.0;
// Shooting length
int nu = 20; // Number of control segments
// Time horizon for integrator
double t0 = 0;
double tf = T/nu;
// Initial position
std::vector<double> X0(3);
X0[0] = 0; // initial position
X0[1] = 0; // initial speed
X0[2] = 1; // initial mass
// Time
SX t = SX::sym("t");
// Differential states
SX s = SX::sym("s"), v = SX::sym("v"), m = SX::sym("m");
SX x = SX::vertcat({s, v, m});
// Control
SX u = SX::sym("u");
SX alpha = 0.05; // friction
SX beta = 0.1; // fuel consumption rate
// Differential equation
SX rhs = SX::vertcat({v, (u-alpha*v*v)/m, -beta*u*u});
// Initial conditions
std::vector<double> x0 = {0, 0, 1};
// DAE
SXDict dae = {{"x", x}, {"p", u}, {"t", t}, {"ode", rhs}};
// Integrator options
std::string plugin;
Dict opts;
if(sundials_integrator){
if(explicit_integrator){
// Explicit integrator (CVODES)
plugin = "cvodes";
// opts["exact_jacobian"] = true;
// opts["linear_multistep_method"] = "bdf"; // adams or bdf
// opts["nonlinear_solver_iteration"] = "newton"; // newton or functional
} else {
// Implicit integrator (IDAS)
plugin = "idas";
opts["calc_ic"] = false;
}
opts["fsens_err_con"] = true;
opts["quad_err_con"] = true;
opts["abstol"] = 1e-6;
opts["reltol"] = 1e-6;
opts["stop_at_end"] = false;
// opts["fsens_all_at_once"] = false;
opts["steps_per_checkpoint"] = 100; // BUG: Too low number causes segfaults
} else {
// An explicit Euler integrator
plugin = "rk";
opts["expand_f"] = true;
opts["interpolation_order"] = 1;
opts["number_of_finite_elements"] = 1000;
}
// Create integrator
Function F = integrator("integrator", plugin, dae, t0, tf, opts);
// control for all segments
MX U = MX::sym("U",nu);
// Integrate over all intervals
MX X=X0;
for(int k=0; k<nu; ++k){
// Integrate
X = F(MXDict{{"x0", X}, {"p", U(k)}}).at("xf");
// Lift X
if(lifted_newton){
X = lift(X, X);
}
}
// Objective function
MX J = dot(U,U);
// Terminal constraints
MX G = vertcat(X(0),X(1));
// Create the NLP
MXDict nlp = {{"x", U}, {"f", J}, {"g", G}};
// NLP solver options
Dict solver_opts;
std::string solver_name;
if(lifted_newton){
solver_name = "scpgen";
solver_opts["verbose"] = true;
solver_opts["regularize"] = false;
solver_opts["max_iter_ls"] = 1;
solver_opts["max_iter"] = 100;
solver_opts["qpsol"] = "nlp"; // Use IPOPT as QP solver
Dict ipopt_options;
ipopt_options["tol"] = 1e-12;
ipopt_options["print_level"] = 0;
ipopt_options["print_time"] = false;
solver_opts["qpsol_options"] =
Dict{{"nlpsol_options", Dict{{"nlpsol", "ipopt"}}}};
} else {
solver_name = "ipopt";
solver_opts["ipopt.tol"] = 1e-10;
solver_opts["ipopt.hessian_approximation"] = "limited-memory";
}
// Create NLP solver
Function solver = nlpsol("nlpsol", solver_name, nlp, solver_opts);
// Bounds on u and initial condition
std::vector<double> umin(nu, -10), umax(nu, 10), u0(nu, 0.4);
// Bounds on g
std::vector<double> gmin = {10, 0}, gmax = {10, 0};
// Solve NLP
std::vector<double> Usol;
solver({{"lbx", umin}, {"ubx", umax}, {"x0", u0}, {"lbg", gmin}, {"ubg", gmax}},
{{"x", &Usol}});
std::cout << "optimal solution: " << Usol << std::endl;
return 0;
}
|