1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/*
* MIT No Attribution
*
* Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <casadi/casadi.hpp>
#include <iostream>
#include <iomanip>
using namespace casadi;
struct Test {
SXDict dae;
double tf;
std::vector<double> x0;
double u0;
bool is_ode;
std::string name;
};
/** \brief Generate a simple ODE */
Test simpleODE(){
// Time
SX t = SX::sym("t");
// Parameter
SX u = SX::sym("u");
// Differential states
SX s = SX::sym("s"), v = SX::sym("v"), m = SX::sym("m");
SX x = vertcat(s, v, m);
// Constants
double alpha = 0.05; // friction
double beta = 0.1; // fuel consumption rate
// Differential equation
SX ode = vertcat(v, (u-alpha*v*v)/m, -beta*u*u);
// Quadrature
SX quad = pow(v,3) + pow((3-sin(t))-u,2);
// Return test problem
Test r;
r.dae = decltype(r.dae){{"t", t}, {"x", x}, {"p", u}, {"ode", ode}, {"quad", quad}}; // decltype because MSVC bug
r.tf = 0.5;
r.x0 = {0, 0, 1};
r.u0 = 0.4;
r.is_ode = true;
r.name = "simple_ode";
return r;
}
/** \brief Generate a simple DAE */
Test simpleDAE(){
// Parameter
SX u = SX::sym("u");
// Differential state
SX x = SX::sym("x");
// Algebraic variable
SX z = SX::sym("z");
// Differential equation
SX ode = -x + 0.5*x*x + u + 0.5*z;
// Algebraic constraint
SX alg = z + exp(z) - 1. + x;
// Quadrature
SX quad = x*x + 3.0*u*u;
// Return DAE
Test r;
r.dae = decltype(r.dae){{"x", x}, {"z", z}, {"p", u}, {"ode", ode}, {"alg", alg}, {"quad", quad}};
r.tf = 5;
r.x0 = {1};
r.u0 = 0.4;
r.is_ode = false;
r.name = "simple_dae";
return r;
}
struct Solver {
std::string plugin;
bool ode_only;
Dict opts;
};
int main(){
// Test problems
std::vector<Test> tests = {simpleODE(), simpleDAE()};
// ODE/DAE integrators
std::vector<Solver> solvers;
solvers.push_back({"cvodes", true, Dict()});
solvers.push_back({"idas", false, Dict()});
solvers.push_back({"rk", true, Dict()});
Dict kinsol_options = {{"linear_solver_type", "dense"}};
Dict coll_opts = {{"rootfinder", "kinsol"},
{"collocation_scheme", "legendre"},
{"rootfinder_options", kinsol_options}};
solvers.push_back({"collocation", false, coll_opts});
// Loop over all problems
for (auto&& test : tests) {
// Loop over all solvers
for (auto&& solver : solvers) {
// Test with or without multiple output times
for (int ntout : {1, 3}) {
// Skip if problem cannot be handled
if (solver.ode_only && !test.is_ode) continue;
// Printout
std::cout << "Solving \"" << test.name << "\" using \"" << solver.plugin << "\", " << ntout << " output times" << std::endl;
// Output time grid
std::vector<double> tout;
if (ntout == 1) {
tout = {test.tf};
} else {
tout = {0, 0.5 * test.tf, test.tf};
}
// Create integrator instance
Function I = integrator("I", solver.plugin, test.dae, 0, tout, solver.opts);
// Buffers for evaluation
std::map<std::string, DM> arg, res;
// Integrate to get results
arg = decltype(arg){{"x0", test.x0},
{"p", test.u0}};
res = I(arg);
DM xf(res.at("xf"));
DM qf(res.at("qf"));
std::cout << std::setw(50) << "Unperturbed solution: " << "xf = " << xf.nonzeros() << ", qf = " << qf.nonzeros() << std::endl;
// Perturb solution to get a finite difference approximation
double h = 0.001;
arg["p"] = test.u0+h;
res = I(arg);
DM fd_xf = (res.at("xf")-xf)/h;
DM fd_qf = (res.at("qf")-qf)/h;
std::cout << std::setw(50) << "Finite difference approximation: " << "d(xf)/d(p) = " << fd_xf.nonzeros() << ", d(qf)/d(p) = " << fd_qf.nonzeros() << std::endl;
// Calculate once, forward
Function I_fwd = I.factory("I_fwd", {"x0", "p", "fwd:x0", "fwd:p"},
{"fwd:xf", "fwd:qf"});
arg = decltype(arg){{"x0", test.x0},
{"p", test.u0},
{"fwd_x0", 0},
{"fwd_p", 1}};
res = I_fwd(arg);
DM fwd_xf = res.at("fwd_xf");
DM fwd_qf = res.at("fwd_qf");
std::cout << std::setw(50) << "Forward sensitivities: " << "d(xf)/d(p) = " << fwd_xf.nonzeros() << ", d(qf)/d(p) = " << fwd_qf.nonzeros() << std::endl;
// Calculate once, adjoint
std::vector<double> adj_qf(ntout, 0);
adj_qf.back() = 1;
Function I_adj = I.factory("I_adj", {"x0", "p", "adj:xf", "adj:qf"},
{"adj:p", "adj:x0"});
arg = decltype(arg){{"x0", test.x0}, {"p", test.u0}, {"adj_xf", 0}, {"adj_qf", adj_qf}};
res = I_adj(arg);
DM adj_x0 = res.at("adj_x0");
DM adj_p = res.at("adj_p");
std::cout << std::setw(50) << "Adjoint sensitivities: " << "d(qf)/d(x0) = " << adj_x0.nonzeros() << ", d(qf)/d(p) = " << adj_p.nonzeros() << std::endl;
// Perturb adjoint solution to get a finite difference approximation of the second order sensitivities
arg["p"] = test.u0+h;
res = I_adj(arg);
DM fd_adj_x0 = (res.at("adj_x0")-adj_x0)/h;
DM fd_adj_p = (res.at("adj_p")-adj_p)/h;
std::cout << std::setw(50) << "FD of adjoint sensitivities: " << "d2(qf)/d(x0)d(p) = " << fd_adj_x0.nonzeros() << ", d2(qf)/d(p)d(p) = " << fd_adj_p.nonzeros() << std::endl;
// Forward over adjoint to get the second order sensitivities
Function I_foa = I_adj.factory("I_foa",
{"x0", "p", "fwd:p", "adj_xf", "adj_qf"},
{"fwd:adj_x0", "fwd:adj_p"});
arg = decltype(arg){{"x0", test.x0},
{"p", test.u0},
{"fwd_p", 1},
{"adj_xf", 0},
{"adj_qf", adj_qf}};
res = I_foa(arg);
DM fwd_adj_x0 = res.at("fwd_adj_x0");
DM fwd_adj_p = res.at("fwd_adj_p");
std::cout << std::setw(50) << "Forward over adjoint sensitivities: " << "d2(qf)/d(x0)d(p) = " << fwd_adj_x0.nonzeros() << ", d2(qf)/d(p)d(p) = " << fwd_adj_p.nonzeros() << std::endl;
// Adjoint over adjoint to get the second order sensitivities
Function I_aoa = I_adj.factory("I_aoa", {"x0", "p", "adj_xf", "adj_qf", "adj:adj_p"},
{"adj:x0", "adj:p"});
arg = decltype(arg){{"x0", test.x0},
{"p", test.u0},
{"adj_xf", 0},
{"adj_qf", adj_qf},
{"adj_adj_p", 1}};
res = I_aoa(arg);
DM adj_adj_x0 = res.at("adj_x0");
DM adj_adj_p = res.at("adj_p");
std::cout << std::setw(50) << "Adjoint over adjoint sensitivities: " << "d2(qf)/d(x0)d(p) = " << adj_adj_x0.nonzeros() << ", d2(qf)/d(p)d(p) = " << adj_adj_p.nonzeros() << std::endl;
}
}
}
return 0;
}
|