1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
/*
* MIT No Attribution
*
* Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/**
File superlu.c from the CSparse example collection
Joel Andersson, KU Leuven, 2010
*/
#include "casadi/casadi.hpp"
using namespace casadi;
int main(int argc, char *argv[])
{
// A
int ncol = 5, nrow = 5;
std::vector<casadi_int> colind = {0, 3, 6, 8, 10, 12};
std::vector<casadi_int> row = {0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4};
std::vector<double> nz = {19, 12, 12, 21, 12, 12, 21, 16, 21, 5, 21, 18};
DM A(Sparsity(nrow, ncol, colind, row), nz);
// Right hand side
DM b = DM::ones(ncol);
// Type of linear systems
enum SymType {UNSYM, SYM, PD};
// All Linear solvers to be tested
struct Test {
std::string solver;
SymType type;
};
std::vector<Test> tests;
tests.push_back({"csparse", UNSYM});
tests.push_back({"csparsecholesky", PD});
tests.push_back({"lapacklu", UNSYM});
tests.push_back({"lapackqr", UNSYM});
tests.push_back({"ma27", SYM});
tests.push_back({"mumps", UNSYM});
tests.push_back({"symbolicqr", UNSYM});
tests.push_back({"qr", UNSYM});
tests.push_back({"ldl", SYM});
tests.push_back({"lsqr", UNSYM});
// Test all combinations
for (auto s : {UNSYM, SYM, PD}) {
DM A_test;
switch (s) {
case UNSYM:
std::cout << "Unsymmetric linear system" << std::endl;
A_test = A;
break;
case SYM:
std::cout << "Symmetric linear system" << std::endl;
A_test = A + A.T();
break;
case PD:
std::cout << "Positive definite linear system" << std::endl;
A_test = mtimes(A.T(), A);
break;
}
for (auto t : tests) {
if (t.type > s) continue; // Cannot be solved
if (!Linsol::has_plugin(t.solver)) {
std::cout << t.solver << " not available" << std::endl;
continue;
}
// Solver specific options
Dict opts;
if (t.solver == "mumps") {
opts["symmetric"] = s == SYM || s == PD;
opts["posdef"] = s == PD;
}
// Create a solver instance
Linsol F("F", t.solver, A_test.sparsity(), opts);
// Solve
if (F.sfact(A_test.ptr())) casadi_error("'sfact' failed");
if (F.nfact(A_test.ptr())) casadi_error("'nfact' failed");
DM x = densify(b);
if (F.solve(A_test.ptr(), x.ptr(), x.size2())) casadi_error("'solve' failed");
// Print the solution
std::cout << "solution: " << x << " (" << t.solver << ")" << std::endl;
}
}
return 0;
}
|