File: biegler_10_1.py

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (156 lines) | stat: -rw-r--r-- 3,778 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#
#     MIT No Attribution
#
#     Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
#     Permission is hereby granted, free of charge, to any person obtaining a copy of this
#     software and associated documentation files (the "Software"), to deal in the Software
#     without restriction, including without limitation the rights to use, copy, modify,
#     merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
#     permit persons to whom the Software is furnished to do so.
#
#     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#     INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#     PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#     HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#     OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# -*- coding: utf-8 -*-
from casadi import *
from numpy import *
import matplotlib.pyplot as plt

# Excercise 1, chapter 10 from Larry Biegler's book
print("program started")

# Test with different number of elements
for N in range(1,11):
  print("N = ", N)

  # Degree of interpolating polynomial
  K = 2

  # Legrandre roots
  tau_root = [0., 0.211325, 0.788675]

  # Radau roots (K=3)
  #tau_root = [0, 0.155051, 0.644949, 1]

  # Time
  t = SX.sym("t")

  # Differential equation
  z = SX.sym("z")
  F = Function("dz_dt", [z],[z*z - 2*z + 1])

  z0 = -3

  # Analytic solution
  z_analytic = Function("z_analytic", [t], [(4*t-3)/(3*t+1)])

  # Collocation point
  tau = SX.sym("tau")

  # Step size
  h = 1.0/N

  # Get the coefficients of the continuity and collocation equations
  D = DM.zeros(K+1)
  C = DM.zeros(K+1,K+1)
  for j in range(K+1):
    # Lagrange polynomial
    L = 1
    for k in range(K+1):
      if(k != j):
        L *= (tau-tau_root[k])/(tau_root[j]-tau_root[k])

    # Evaluate at end for coefficients of continuity equation
    lfcn = Function("lfcn", [tau],[L])
    D[j] = lfcn(1.)

    # Differentiate and evaluate at collocation points
    tfcn = Function("tfcn", [tau],[tangent(L,tau)])
    for k in range(K+1): C[j,k] = tfcn(tau_root[k])
  print("C = ", C)
  print("D = ", D)

  # Collocated states
  Z = SX.sym("Z",N,K+1)

  # Construct the NLP
  x = vec(Z.T)
  g = []
  for i in range(N):
    for k in range(1,K+1):
      # Add collocation equations to NLP
      rhs = 0
      for j in range(K+1):
        rhs += Z[i,j]*C[j,k]
      FF = F(Z[i,k])
      g.append(h*FF-rhs)

    # Add continuity equation to NLP
    rhs = 0
    for j in range(K+1):
      rhs += D[j]*Z[i,j]

    if(i<N-1):
      g.append(Z[i+1,0] - rhs)

  g = vertcat(*g)

  print("g = ", g)

  # NLP
  nlp = {'x':x, 'f':x[0]**2, 'g':g}

  ## ----
  ## SOLVE THE NLP
  ## ----

  # NLP solver options
  opts = {"ipopt.tol" : 1e-10}

  # Allocate an NLP solver and buffer
  solver = nlpsol("solver", "ipopt", nlp, opts)
  arg = {}

  # Initial condition
  arg["x0"] = x.nnz() * [0]

  # Bounds on x
  lbx = x.nnz()*[-100]
  ubx = x.nnz()*[100]
  lbx[0] = ubx[0] = z0
  arg["lbx"] = lbx
  arg["ubx"] = ubx

  # Bounds on the constraints
  arg["lbg"] = 0
  arg["ubg"] = 0

  # Solve the problem
  res = solver(**arg)

  ## Print the time points
  t_opt = N*(K+1) * [0]
  for i in range(N):
    for j in range(K+1):
      t_opt[j + (K+1)*i] = h*(i + tau_root[j])

  print("time points: ", t_opt)

  # Print the optimal cost
  print("optimal cost: ", float(res["f"]))

  # Print the optimal solution
  xopt = res["x"].nonzeros()
  print("optimal solution: ", xopt)

  # plot to screen
  plt.plot(t_opt,xopt)

# show the plots
plt.show()