File: c_code_generation.py

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (89 lines) | stat: -rw-r--r-- 2,905 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#
#     MIT No Attribution
#
#     Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
#     Permission is hereby granted, free of charge, to any person obtaining a copy of this
#     software and associated documentation files (the "Software"), to deal in the Software
#     without restriction, including without limitation the rights to use, copy, modify,
#     merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
#     permit persons to whom the Software is furnished to do so.
#
#     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#     INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#     PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#     HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#     OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#

from casadi import *
from numpy import *
from os import system
import time
import sys


compileme = True  # Flag wether compiling should take place or not

if len(sys.argv)>1 and sys.argv[1]=='nc':
  compileme = False
else:
  print("Info: Use 'python c_code_generation.py nc' to omit compiling")

# Form an expression for the gradient of the determinant
x = SX.sym('x', 7, 7)
gd = casadi.gradient(det(x), x)

# Random point to evaluate it
x0 = DM.rand(7, 7)

# Form a function and generate C code
name = 'grad_det'
grad_det = Function(name, [x], [gd], ['x'], ['gd'])
cname = grad_det.generate()

oname_no_opt = name + '_no_opt.so'
print('Compiling without optimization: ', oname_no_opt)
t1 = time.time()
if compileme:
  system('gcc -fPIC -shared ' + cname + ' -o ' + oname_no_opt)
t2 = time.time()
print('time = ', (t2-t1)*1e3, ' ms')

oname_O3 = name + '_O3.so'
print('Compiling with O3 optimization: ', oname_O3)
t1 = time.time()
if compileme:
  system('gcc -fPIC -shared -O3 ' + cname + ' -o ' + oname_O3)
t2 = time.time()
print('time = ', (t2-t1)*1e3, ' ms')

oname_Os = name + '_Os.so'
print('Compiling with Os optimization: ', oname_Os)
t1 = time.time()
if compileme:
  system('gcc -fPIC -shared -Os ' + cname + ' -o ' + oname_Os)
t2 = time.time()
print('time = ', (t2-t1)*1e3, ' ms')

# Read function
grad_det_no_opt = external(name, './'+oname_no_opt)
grad_det_O3 = external(name, './'+oname_O3)
grad_det_Os = external(name, './'+oname_O3)
f_test = [grad_det, grad_det_no_opt, grad_det_O3, grad_det_Os]

for f in f_test:
  t1 = time.time()
  nrep = 10000
  for r in range(nrep):
    r = f(x0)
  t2 = time.time()
  print('result = ', r.nonzeros())
  dt = (t2-t1)/nrep
  print('time = ', dt*1e3, ' ms')

  num_op = grad_det.n_nodes()
  print('number of elementary operations: ', num_op)
  print('time per elementary operations: ', dt/num_op*1e9, ' ns')