File: chain_qp.py

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (137 lines) | stat: -rw-r--r-- 3,495 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#
#     MIT No Attribution
#
#     Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
#     Permission is hereby granted, free of charge, to any person obtaining a copy of this
#     software and associated documentation files (the "Software"), to deal in the Software
#     without restriction, including without limitation the rights to use, copy, modify,
#     merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
#     permit persons to whom the Software is furnished to do so.
#
#     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#     INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#     PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#     HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#     OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# -*- coding: utf-8 -*-
"""
We want to model a chain attached to two supports and hanging in between. Let us discretise
it with N mass points connected by N-1 springs. Each mass i has position (yi,zi), i=1,...,N.
The equilibrium point of the system minimises the potential energy.

The potential energy of each spring is
Vi=D_i/2 * ((y_i-y_{i+1})^2 + (z_i-z_{i+1})^2)

The gravitational potential energy of each mass is
Vg_i = m_i*g0*z_i

The total potential energy is thus given by:
 
Vchain(y,z) = 1/2*sum{i=1,...,N-1} D_i ((y_i-y_{i+1})^2+(z_i-z_{i+1})^2) + g0 * sum{i=1,...,N} m_i * z_i

where y=[y_1,...,y_N] and z=[z_1,...,z_N]

We wish to solve
minimize{y,z} Vchain(y, z)

Subject to the piecewise linear ground constraints:
z_i >= zin
z_i - 0.1*y_i >= 0.5
"""

from casadi import *

# Constants
N = 40
m_i = 40.0/N
D_i = 70.0*N
g0 = 9.81
#zmin = -inf # unbounded
zmin = 0.5 # ground

# Objective function
Vchain = 0

# Variables
x = []

# Variable bounds
lbx = []
ubx = []

# Constraints
g = []

# Constraint bounds
lbg = []
ubg = []

# Loop over all chain elements
for i in range(1, N+1):
   # Previous point
   if i>1:
      y_prev = y_i
      z_prev = z_i

   # Create variables for the (y_i, z_i) coordinates
   y_i = SX.sym('y_' + str(i))
   z_i = SX.sym('z_' + str(i))

   # Add to the list of variables
   x += [y_i, z_i]
   if i==1:
    lbx += [-2., 1.]
    ubx += [-2., 1.]
   elif i==N:
    lbx += [ 2., 1.]
    ubx += [ 2., 1.]
   else:
    lbx += [-inf, zmin]
    ubx += [ inf,  inf]

   # Spring potential
   if i>1:
      Vchain += D_i/2*((y_prev-y_i)**2 + (z_prev-z_i)**2)

   # Graviational potential
   Vchain += g0 * m_i * z_i

   # Slanted ground constraints
   g.append(z_i - 0.1*y_i)
   lbg.append( 0.5)
   ubg.append( inf)

# Formulate QP
qp = {'x':vertcat(*x), 'f':Vchain, 'g':vertcat(*g)}

# Solve with IPOPT
solver = qpsol('solver', 'qpoases', qp, {'sparse':True})
#solver = qpsol('solver', 'gurobi', qp)
#solver = nlpsol('solver', 'ipopt', qp)

# Get the optimal solution
sol = solver(lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg)
x_opt = sol['x']
f_opt = sol['f']
print('f_opt = ', f_opt)

# Retrieve the result
Y0 = x_opt[0::2]
Z0 = x_opt[1::2]

# Plot the result
import matplotlib.pyplot as plt
plt.plot(Y0,Z0,'o-')
ys = linspace(-2.,2.,100)
zs = 0.5 + 0.1*ys
plt.plot(ys,zs,'--')
plt.xlabel('y [m]')
plt.ylabel('z [m]')
plt.title('hanging chain QP')
plt.grid(True)
plt.legend(['Chain','z - 0.1y >= 0.5'],loc=9)
plt.show()