1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# -*- coding: utf-8 -*-
"""
@author: Mario Zanon and Sebastien Gross, KU Leuven 2012
"""
from casadi import *
import numpy as np
import matplotlib.pyplot as plt
# -----------------------------------------------------------------------------
# Collocation setup
# -----------------------------------------------------------------------------
nicp = 1 # Number of (intermediate) collocation points per control interval
xref = 0.1 # chariot reference
l = 1. #- -> crane, + -> pendulum
m = 1.
M = 1.
g = 9.81
tf = 5.0
nk = 50
ndstate = 6
nastate = 1
ninput = 1
# Degree of interpolating polynomial
deg = 4
# Radau collocation points
cp = "radau"
# Size of the finite elements
h = tf/nk/nicp
# Coefficients of the collocation equation
C = np.zeros((deg+1,deg+1))
# Coefficients of the continuity equation
D = np.zeros(deg+1)
# Collocation point
tau = SX.sym("tau")
# All collocation time points
tau_root = [0] + collocation_points(deg, cp)
T = np.zeros((nk,deg+1))
for i in range(nk):
for j in range(deg+1):
T[i][j] = h*(i + tau_root[j])
# For all collocation points: eq 10.4 or 10.17 in Biegler's book
# Construct Lagrange polynomials to get the polynomial basis at the collocation point
for j in range(deg+1):
L = 1
for j2 in range(deg+1):
if j2 != j:
L *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2])
# Evaluate the polynomial at the final time to get the coefficients of the continuity equation
lfcn = Function('lfcn', [tau],[L])
D[j] = lfcn(1.0)
# Evaluate the time derivative of the polynomial at all collocation points to get the coefficients of the continuity equation
tfcn = Function('tfcn', [tau],[tangent(L,tau)])
for j2 in range(deg+1):
C[j][j2] = tfcn(tau_root[j2])
# -----------------------------------------------------------------------------
# Model setup
# -----------------------------------------------------------------------------
# Declare variables (use scalar graph)
t = SX.sym("t") # time
u = SX.sym("u") # control
xd = SX.sym("xd",ndstate) # differential state
xa = SX.sym("xa",nastate) # algebraic state
xddot = SX.sym("xdot",ndstate) # differential state time derivative
p = SX.sym("p",0,1) # parameters
x = SX.sym("x")
y = SX.sym("y")
w = SX.sym("w")
dx = SX.sym("dx")
dy = SX.sym("dy")
dw = SX.sym("dw")
res = vertcat(xddot[0] - dx,\
xddot[1] - dy,\
xddot[2] - dw,\
m*xddot[3] + (x-w)*xa, \
m*xddot[4] + y*xa - g*m,\
M*xddot[5] + (w-x)*xa + u,\
(x-w)*(xddot[3] - xddot[5]) + y*xddot[4] + dy*dy + (dx-dw)*(dx-dw))
xd[0] = x
xd[1] = y
xd[2] = w
xd[3] = dx
xd[4] = dy
xd[5] = dw
# System dynamics (implicit formulation)
ffcn = Function('ffcn', [t,xddot,xd,xa,u,p],[res])
# Objective function
MayerTerm = Function('mayer', [t,xd,xa,u,p],[(x-xref)*(x-xref) + (w-xref)*(w-xref) + dx*dx + dy*dy])
LagrangeTerm = Function('lagrange', [t,xd,xa,u,p],[(x-xref)*(x-xref) + (w-xref)*(w-xref)])
# Control bounds
u_min = np.array([-2])
u_max = np.array([ 2])
u_init = np.array((nk*nicp*(deg+1))*[[0.0]]) # needs to be specified for every time interval (even though it stays constant)
# Differential state bounds
#Path bounds
xD_min = np.array([-inf, -inf, -inf, -inf, -inf, -inf])
xD_max = np.array([ inf, inf, inf, inf, inf, inf])
#Initial bounds
xDi_min = np.array([ 0.0, l, 0.0, 0.0, 0.0, 0.0])
xDi_max = np.array([ 0.0, l, 0.0, 0.0, 0.0, 0.0])
#Final bounds
xDf_min = np.array([-inf, -inf, -inf, -inf, -inf, -inf])
xDf_max = np.array([ inf, inf, inf, inf, inf, inf])
#Initial guess for differential states
xD_init = np.array((nk*nicp*(deg+1))*[[ 0.0, l, 0.0, 0.0, 0.0, 0.0]]) # needs to be specified for every time interval
# Algebraic state bounds and initial guess
xA_min = np.array([-inf])
xA_max = np.array([ inf])
xAi_min = np.array([-inf])
xAi_max = np.array([ inf])
xAf_min = np.array([-inf])
xAf_max = np.array([ inf])
xA_init = np.array((nk*nicp*(deg+1))*[[sign(l)*9.81]])
# Parameter bounds and initial guess
p_min = np.array([])
p_max = np.array([])
p_init = np.array([])
# -----------------------------------------------------------------------------
# Constraints setup
# -----------------------------------------------------------------------------
# Initial constraint
ic_min = np.array([])
ic_max = np.array([])
ic = SX()
#ic.append(); ic_min = append(ic_min, 0.); ic_max = append(ic_max, 0.)
icfcn = Function('icfcn', [t,xd,xa,u,p],[ic])
# Path constraint
pc_min = np.array([])
pc_max = np.array([])
pc = SX()
#pc.append(); pc_min = append(pc_min, 0.); pc_max = append(pc_max, 0.)
pcfcn = Function('pcfcn', [t,xd,xa,u,p],[pc])
# Final constraint
fc_min = np.array([])
fc_max = np.array([])
fc = SX()
#fc.append(); fc_min = append(fc_min, 0.); fc_max = append(fc_max, 0.)
fcfcn = Function('fcfcn', [t,xd,xa,u,p],[fc])
# -----------------------------------------------------------------------------
# NLP setup
# -----------------------------------------------------------------------------
# Dimensions of the problem
nx = xd.nnz() + xa.nnz() # total number of states #MODIF
ndiff = xd.nnz() # number of differential states #MODIF
nalg = xa.nnz() # number of algebraic states
nu = u.nnz() # number of controls
NP = p.nnz() # number of parameters
# Total number of variables
NXD = nicp*nk*(deg+1)*ndiff # Collocated differential states
NXA = nicp*nk*deg*nalg # Collocated algebraic states
NU = nk*nu # Parametrized controls
NXF = ndiff # Final state (only the differential states)
NV = NXD+NXA+NU+NXF+NP
# NLP variable vector
V = MX.sym("V",NV)
# All variables with bounds and initial guess
vars_lb = np.zeros(NV)
vars_ub = np.zeros(NV)
vars_init = np.zeros(NV)
offset = 0
# Get the parameters
P = V[offset:offset+NP]
vars_init[offset:offset+NP] = p_init
vars_lb[offset:offset+NP] = p_min
vars_ub[offset:offset+NP] = p_max
offset += NP
# Get collocated states and parametrized control
XD = np.resize(np.array([],dtype=MX),(nk+1,nicp,deg+1)) # NB: same name as above
XA = np.resize(np.array([],dtype=MX),(nk,nicp,deg)) # NB: same name as above
U = np.resize(np.array([],dtype=MX),nk)
for k in range(nk):
# Collocated states
for i in range(nicp):
#
for j in range(deg+1):
# Get the expression for the state vector
XD[k][i][j] = V[offset:offset+ndiff]
if j !=0:
XA[k][i][j-1] = V[offset+ndiff:offset+ndiff+nalg]
# Add the initial condition
index = (deg+1)*(nicp*k+i) + j
if k==0 and j==0 and i==0:
vars_init[offset:offset+ndiff] = xD_init[index,:]
vars_lb[offset:offset+ndiff] = xDi_min
vars_ub[offset:offset+ndiff] = xDi_max
offset += ndiff
else:
if j!=0:
vars_init[offset:offset+nx] = np.append(xD_init[index,:],xA_init[index,:])
vars_lb[offset:offset+nx] = np.append(xD_min,xA_min)
vars_ub[offset:offset+nx] = np.append(xD_max,xA_max)
offset += nx
else:
vars_init[offset:offset+ndiff] = xD_init[index,:]
vars_lb[offset:offset+ndiff] = xD_min
vars_ub[offset:offset+ndiff] = xD_max
offset += ndiff
# Parametrized controls
U[k] = V[offset:offset+nu]
vars_lb[offset:offset+nu] = u_min
vars_ub[offset:offset+nu] = u_max
vars_init[offset:offset+nu] = u_init[index,:]
offset += nu
# State at end time
XD[nk][0][0] = V[offset:offset+ndiff]
vars_lb[offset:offset+ndiff] = xDf_min
vars_ub[offset:offset+ndiff] = xDf_max
vars_init[offset:offset+ndiff] = xD_init[-1,:]
offset += ndiff
assert(offset==NV)
# Constraint function for the NLP
g = []
lbg = []
ubg = []
# Initial constraints
ick = icfcn(0., XD[0][0][0], XA[0][0][0], U[0], P)
g += [ick]
lbg.append(ic_min)
ubg.append(ic_max)
# For all finite elements
for k in range(nk):
for i in range(nicp):
# For all collocation points
for j in range(1,deg+1):
# Get an expression for the state derivative at the collocation point
xp_jk = 0
for j2 in range (deg+1):
xp_jk += C[j2][j]*XD[k][i][j2] # get the time derivative of the differential states (eq 10.19b)
# Add collocation equations to the NLP
fk = ffcn(0., xp_jk/h, XD[k][i][j], XA[k][i][j-1], U[k], P)
g += [fk[:ndiff]] # impose system dynamics (for the differential states (eq 10.19b))
lbg.append(np.zeros(ndiff)) # equality constraints
ubg.append(np.zeros(ndiff)) # equality constraints
g += [fk[ndiff:]] # impose system dynamics (for the algebraic states (eq 10.19b))
lbg.append(np.zeros(nalg)) # equality constraints
ubg.append(np.zeros(nalg)) # equality constraints
# Evaluate the path constraint function
pck = pcfcn(0., XD[k][i][j], XA[k][i][j-1], U[k], P)
g += [pck]
lbg.append(pc_min)
ubg.append(pc_max)
# Get an expression for the state at the end of the finite element
xf_k = 0
for j in range(deg+1):
xf_k += D[j]*XD[k][i][j]
# Add continuity equation to NLP
if i==nicp-1:
# print "a ", k, i
g += [XD[k+1][0][0] - xf_k]
else:
# print "b ", k, i
g += [XD[k][i+1][0] - xf_k]
lbg.append(np.zeros(ndiff))
ubg.append(np.zeros(ndiff))
# Periodicity constraints
# none
# Final constraints (Const, dConst, ConstQ)
fck = fcfcn(0., XD[k][i][j], XA[k][i][j-1], U[k], P)
g += [fck]
lbg.append(fc_min)
ubg.append(fc_max)
# Objective function of the NLP
#Implement Mayer term
Obj = 0
obj = MayerTerm(0., XD[k][i][j], XA[k][i][j-1], U[k], P)
Obj += obj
# Implement Lagrange term
lDotAtTauRoot = C.T
lAtOne = D
ldInv = np.linalg.inv(lDotAtTauRoot[1:,1:])
ld0 = lDotAtTauRoot[1:,0]
lagrangeTerm = 0
for k in range(nk):
for i in range(nicp):
dQs = h*veccat(*[LagrangeTerm(0., XD[k][i][j], XA[k][i][j-1], U[k], P) \
for j in range(1,deg+1)])
Qs = mtimes( ldInv, dQs)
m = mtimes( Qs.T, lAtOne[1:])
lagrangeTerm += m
Obj += lagrangeTerm
# NLP
nlp = {'x':V, 'f':Obj, 'g':vertcat(*g)}
## ----
## SOLVE THE NLP
## ----
# NLP solver options
opts = {}
opts["expand"] = True
opts["ipopt.max_iter"] = 1000
opts["ipopt.tol"] = 1e-4
opts["ipopt.linear_solver"] = 'ma27'
# Allocate an NLP solver
solver = nlpsol("solver", "ipopt", nlp, opts)
arg = {}
# Initial condition
arg["x0"] = vars_init
# Bounds on x
arg["lbx"] = vars_lb
arg["ubx"] = vars_ub
# Bounds on g
arg["lbg"] = np.concatenate(lbg)
arg["ubg"] = np.concatenate(ubg)
# Solve the problem
res = solver(**arg)
# Print the optimal cost
print("optimal cost: ", float(res["f"]))
# Retrieve the solution
v_opt = np.array(res["x"])
## ----
## RETRIEVE THE SOLUTION
## ----
xD_opt = np.resize(np.array([],dtype=MX),(ndiff,(deg+1)*nicp*(nk)+1))
xA_opt = np.resize(np.array([],dtype=MX),(nalg,(deg)*nicp*(nk)))
u_opt = np.resize(np.array([],dtype=MX),(nu,(deg+1)*nicp*(nk)+1))
offset = 0
offset2 = 0
offset3 = 0
offset4 = 0
for k in range(nk):
for i in range(nicp):
for j in range(deg+1):
xD_opt[:,offset2] = v_opt[offset:offset+ndiff][:,0]
offset2 += 1
offset += ndiff
if j!=0:
xA_opt[:,offset4] = v_opt[offset:offset+nalg][:,0]
offset4 += 1
offset += nalg
utemp = v_opt[offset:offset+nu][:,0]
for i in range(nicp):
for j in range(deg+1):
u_opt[:,offset3] = utemp
offset3 += 1
# u_opt += v_opt[offset:offset+nu]
offset += nu
xD_opt[:,-1] = v_opt[offset:offset+ndiff][:,0]
# The algebraic states are not defined at the first collocation point of the finite elements:
# with the polynomials we compute them at that point
Da = np.zeros(deg)
for j in range(1,deg+1):
# Lagrange polynomials for the algebraic states: exclude the first point
La = 1
for j2 in range(1,deg+1):
if j2 != j:
La *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2])
lafcn = Function('lafcn', [tau], [La])
Da[j-1] = lafcn(tau_root[0])
xA_plt = np.resize(np.array([],dtype=MX),(nalg,(deg+1)*nicp*(nk)+1))
offset4=0
offset5=0
for k in range(nk):
for i in range(nicp):
for j in range(deg+1):
if j!=0:
xA_plt[:,offset5] = xA_opt[:,offset4]
offset4 += 1
offset5 += 1
else:
xa0 = 0
for j in range(deg):
xa0 += Da[j]*xA_opt[:,offset4+j]
xA_plt[:,offset5] = xa0
#xA_plt[:,offset5] = xA_opt[:,offset4]
offset5 += 1
xA_plt[:,-1] = xA_plt[:,-2]
tg = np.array(tau_root)*h
for k in range(nk*nicp):
if k == 0:
tgrid = tg
else:
tgrid = np.append(tgrid,tgrid[-1]+tg)
tgrid = np.append(tgrid,tgrid[-1])
# Plot the results
plt.figure(1)
plt.clf()
plt.subplot(2,2,1)
plt.plot(tgrid,xD_opt[0,:],'--')
plt.title("x")
plt.grid
plt.subplot(2,2,2)
plt.plot(tgrid,xD_opt[1,:],'-')
plt.title("y")
plt.grid
plt.subplot(2,2,3)
plt.plot(tgrid,xD_opt[2,:],'-.')
plt.title("w")
plt.grid
plt.figure(2)
plt.clf()
plt.plot(tgrid,u_opt[0,:],'-.')
plt.title("Crane, inputs")
plt.xlabel('time')
plt.figure(3)
plt.clf()
plt.plot(tgrid,xA_plt[0,:],'-.')
plt.title("Crane, lambda")
plt.xlabel('time')
plt.grid()
plt.show()
|