1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
from casadi import *
"""
Solves the following optimal control problem (OCP) in differential-algebraic
equations (DAE)
minimize integral_{t=0}^{10} x0^2 + x1^2 + u^2 dt
x0,x1,z,u
subject to dot(x0) == z*x0-x1+u \
dot(x1) == x0 } for 0 <= t <= 10
0 == x1^2 + z - 1 /
x0(t=0) == 0
x1(t=0) == 1
x0(t=10) == 0
x1(t=10) == 0
-0.75 <= u <= 1 for 0 <= t <= 10
The method used is direct multiple shooting.
Joel Andersson, 2015
"""
# Declare variables
x0 = SX.sym('x0')
x1 = SX.sym('x1')
x = vertcat(x0, x1) # Differential states
z = SX.sym('z') # Algebraic variable
u = SX.sym('u') # Control
# Differential equation
f_x = vertcat(z*x0-x1+u, x0)
# Algebraic equation
f_z = x1**2 + z - 1
# Lagrange cost term (quadrature)
f_q = x0**2 + x1**2 + u**2
# Create an integrator
dae = {'x':x, 'z':z, 'p':u, 'ode':f_x, 'alg':f_z, 'quad':f_q}
# interval length 0.5s
I = integrator('I', 'idas', dae, 0, 0.5)
# Number of intervals
nk = 20
# Start with an empty NLP
w = [] # List of variables
lbw = [] # Lower bounds on w
ubw = [] # Upper bounds on w
G = [] # Constraints
J = 0 # Cost function
# Initial conditions
Xk = MX.sym('X0', 2)
w.append(Xk)
lbw += [ 0, 1 ]
ubw += [ 0, 1 ]
# Loop over all intervals
for k in range(nk):
# Local control
Uk = MX.sym('U'+str(k))
w.append(Uk)
lbw += [-0.75]
ubw += [ 1.00]
# Call integrator function
Ik = I(x0=Xk, p=Uk)
Xk = Ik['xf']
J = J + Ik['qf'] # Sum quadratures
# "Lift" the variable
X_prev = Xk
Xk = MX.sym('X'+str(k+1), 2)
w.append(Xk)
lbw += [-inf, -inf]
ubw += [ inf, inf]
G.append(X_prev - Xk)
# Allocate an NLP solver
nlp = {'x':vertcat(*w), 'f':J, 'g':vertcat(*G)}
opts = {'ipopt.linear_solver':'ma27'}
solver = nlpsol('solver', 'ipopt', nlp, opts)
# Pass bounds, initial guess and solve NLP
sol = solver(lbx = lbw, # Lower variable bound
ubx = ubw, # Upper variable bound
lbg = 0.0, # Lower constraint bound
ubg = 0.0, # Upper constraint bound
x0 = 0.0) # Initial guess
# Plot the results
import matplotlib.pyplot as plt
plt.figure(1)
plt.clf()
plt.plot(linspace(0., 10., nk+1), sol['x'][0::3],'--')
plt.plot(linspace(0., 10., nk+1), sol['x'][1::3],'-')
plt.plot(linspace(0., 10., nk), sol['x'][2::3],'-.')
plt.title('Van der Pol optimization - multiple shooting')
plt.xlabel('time')
plt.legend(['x0 trajectory','x1 trajectory','u trajectory'])
plt.grid()
plt.show()
|