1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# -*- coding: utf-8 -*-
from casadi import *
import pylab as plt
# Pendulum: point mass on massless rod
# x'' = T*x, y'' = T*y-g, x**2+y**2-L**2
#
#
# .
# L /
# /
# /
# o (x,y)
#
x = SX.sym("x") # horizontal position of point
y = SX.sym("y") # vertical position of point
dx = SX.sym("dx")
dy = SX.sym("dy")
u = SX.sym("u") # helper states to bring second order system to first order
v = SX.sym("v")
du = SX.sym("du")
dv = SX.sym("dv")
# Force
T = SX.sym("T")
L = 1
g = 9.81
alg = vertcat(dx-u,dy-v,du-T*x,dv-T*y+g,x**2+y**2-L**2)
# Implicit differential states
x_impl = vertcat(x,y,u,v)
# Derivatives of implict differential states
dx_impl = vertcat(dx,dy,du,dv)
z = T
dae = {"x_impl": x_impl, "dx_impl": dx_impl, "z": z, "alg": alg}
# Perform index reduction
(dae_reduced,stats) = dae_reduce_index(dae)
print("We had an index 3 system (reduced to index 1 now)")
print(stats)
print("Here's the reduced DAE:")
print(dae_reduced)
print("Notice how the algebraic equation now contains a second derivative of x**2+y**2-L**2")
print("Also note how x**2+y**2-L**2 and its first derivate are absent from the algebraic equations.")
print("Both are kept in 'I' though: the resulting DAE invariants.")
# The DAE is not yet in a form that CasADi integrator can handle (semi-explicit).
# Let's convert it, ad obtain some adaptors
[dae_se, state_to_orig, phi] = dae_map_semi_expl(dae, dae_reduced)
grid = list(np.linspace(0,5,1000))
tf = DM(grid).T
intg = integrator("intg","idas",dae_se,0,grid)
# Before we can integrate, we need a consistant initial guess
# Let's say we start at y=-0.5, dx=-0.1;
# consistency equations should automatically identify everything else
# Encode the desire to only enforce y and dx
init_strength = {}
free = 0 # default
force = -1
init_strength["x_impl"] = vertcat(free,force,free,free)
init_strength["dx_impl"] = vertcat(force,free,free,free)
init_strength["z"] = vertcat(free)
# Obtain a generating Function for initial guesses
init_gen = dae_init_gen(dae, dae_reduced, "ipopt", init_strength)
init = {}
blank = 0.0 # Will not be enforced but still used as initial guess
# suggest to initialize with the left-hanging solution by having x=-1 as initial guess
init["x_impl"] = vertcat(-1.0,-0.5,blank,blank)
init["dx_impl"] = vertcat(-0.1,blank,blank,blank)
init["z"] = blank
xz0 = init_gen(**init)
print("We have a consistent initial guess now to feed to the integrator:")
print(xz0)
print("Look, we found that force in the pendulum at t=0 equals:")
print(state_to_orig(xf=xz0['x0'],zf=xz0['z0'])["z"])
print("A consistent initial guess should make the invariants zero (up to solver precision):")
print(phi(x=xz0['x0'],z=xz0['z0']))
# Integrate and get resultant xf,zf on grid
sol = intg(**xz0)
print(sol['xf'].shape)
# Solution projected into original DAE space
sol_orig = state_to_orig(xf=sol["xf"],zf=sol["zf"])
# We can see the large-angle pendulum motion play out well in the u state
plt.plot(tf.T,sol_orig["x_impl"].T)
plt.grid(True)
plt.legend([e.name() for e in vertsplit(x_impl)])
plt.xlabel("Time [s]")
plt.title("Boundary value problem solution trajectory")
# A perfect integrator will perfectly preserve the values of the invariants over time
# Integrator errors make the invariants drift in practice
# This is not a detail; the pendulum length is in fact growing!
error = phi(x=sol["xf"],z=sol["zf"])["I"]
plt.figure()
plt.plot(tf.T,error.T)
plt.grid(True)
plt.xlabel("Time [s]")
plt.title("Evolution trajectory of invariants")
# There are some techniques to avoid the drifting of invariants associated with index reduction
# - Method of Dummy Derviatives (not implemented)
# hard implementation details: may need to switch between different choices online
# -> integration in parts triggered by zero-crossing events
# - Stop the integration every once in a while and project back (not implemented)
# - Baumgarte stabilization (implemented): build into the equations a form of continuous feedback that brings back deviations in invariants back into the origin
# Demonstrate Baumgarte stabilization with a pole of -1.
# Drift is absent now.
(dae_reduced,stats) = dae_reduce_index(dae, {"baumgarte_pole": -1})
[dae_se, state_to_orig, phi] = dae_map_semi_expl(dae, dae_reduced)
intg = integrator("intg","idas",dae_se,0,grid)
init_gen = dae_init_gen(dae, dae_reduced, "ipopt", init_strength)
xz0 = init_gen(**init)
sol = intg(**xz0)
error = phi(x=sol["xf"],z=sol["zf"])["I"]
plt.figure()
plt.plot(tf.T,error.T)
plt.grid(True)
plt.xlabel("Time [s]")
plt.title("Boundary value problem solution trajectory with Baumgarte pole=-1")
# Sweep across different integrator precisions and Baumgarte poles.
# The choice of pole is not really straightforward
plt.figure()
poles = [-0.1,-1,-10]
precisions = [0.1,1,10]
abstol_default = 1e-8
reltol_default = 1e-6
plt.subplot(len(precisions),len(poles),1)
for i,pole in enumerate(poles):
for j,precision in enumerate(precisions):
(dae_reduced,stats) = dae_reduce_index(dae, {"baumgarte_pole": pole})
[dae_se, state_to_orig, phi] = dae_map_semi_expl(dae, dae_reduced)
intg = integrator("intg","idas",dae_se,0,grid,{"abstol":abstol_default*precision,"reltol":reltol_default*precision})
init_gen = dae_init_gen(dae, dae_reduced, "ipopt", init_strength, {"ipopt.print_level":0,"print_time": False})
xz0 = init_gen(**init)
sol = intg(**xz0)
nfevals = intg.stats()["nfevals"]
error = phi(x=sol["xf"],z=sol["zf"])["I"]
plt.subplot(len(precisions),len(poles),j*len(poles)+i+1)
plt.plot(tf.T,error.T)
plt.grid(True)
plt.xlabel("Time [s]")
plt.title("pole=%0.1f, abstol=%0.0e => nfevals=%d" % (pole,abstol_default*precision,nfevals))
plt.show()
|