1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
from casadi import *
T = 10. # Time horizon
N = 20 # number of control intervals
# Declare model variables
x1 = MX.sym('x1')
x2 = MX.sym('x2')
x = vertcat(x1, x2)
u = MX.sym('u')
# Model equations
xdot = vertcat((1-x2**2)*x1 - x2 + u, x1)
# Objective term
L = x1**2 + x2**2 + u**2
# Formulate discrete time dynamics
if False:
# CVODES from the SUNDIALS suite
dae = {'x':x, 'p':u, 'ode':xdot, 'quad':L}
F = integrator('F', 'cvodes', dae, 0, T/N)
else:
# Fixed step Runge-Kutta 4 integrator
M = 4 # RK4 steps per interval
DT = T/N/M
f = Function('f', [x, u], [xdot, L])
X0 = MX.sym('X0', 2)
U = MX.sym('U')
X = X0
Q = 0
for j in range(M):
k1, k1_q = f(X, U)
k2, k2_q = f(X + DT/2 * k1, U)
k3, k3_q = f(X + DT/2 * k2, U)
k4, k4_q = f(X + DT * k3, U)
X=X+DT/6*(k1 +2*k2 +2*k3 +k4)
Q = Q + DT/6*(k1_q + 2*k2_q + 2*k3_q + k4_q)
F = Function('F', [X0, U], [X, Q],['x0','p'],['xf','qf'])
# Evaluate at a test point
Fk = F(x0=[0.2,0.3],p=0.4)
print(Fk['xf'])
print(Fk['qf'])
# Start with an empty NLP
w=[]
w0 = []
lbw = []
ubw = []
J = 0
g=[]
lbg = []
ubg = []
# "Lift" initial conditions
Xk = MX.sym('X0', 2)
w += [Xk]
lbw += [0, 1]
ubw += [0, 1]
w0 += [0, 1]
# Formulate the NLP
for k in range(N):
# New NLP variable for the control
Uk = MX.sym('U_' + str(k))
w += [Uk]
lbw += [-1]
ubw += [1]
w0 += [0]
# Integrate till the end of the interval
Fk = F(x0=Xk, p=Uk)
Xk_end = Fk['xf']
J=J+Fk['qf']
# New NLP variable for state at end of interval
Xk = MX.sym('X_' + str(k+1), 2)
w += [Xk]
lbw += [-0.25, -inf]
ubw += [ inf, inf]
w0 += [0, 0]
# Add equality constraint
g += [Xk_end-Xk]
lbg += [0, 0]
ubg += [0, 0]
# Create an NLP solver
prob = {'f': J, 'x': vertcat(*w), 'g': vertcat(*g)}
solver = nlpsol('solver', 'ipopt', prob);
# Solve the NLP
sol = solver(x0=w0, lbx=lbw, ubx=ubw, lbg=lbg, ubg=ubg)
w_opt = sol['x'].full().flatten()
# Plot the solution
x1_opt = w_opt[0::3]
x2_opt = w_opt[1::3]
u_opt = w_opt[2::3]
tgrid = [T/N*k for k in range(N+1)]
import matplotlib.pyplot as plt
plt.figure(1)
plt.clf()
plt.plot(tgrid, x1_opt, '--')
plt.plot(tgrid, x2_opt, '-')
plt.step(tgrid, vertcat(DM.nan(1), u_opt), '-.')
plt.xlabel('t')
plt.legend(['x1','x2','u'])
plt.grid()
plt.show()
|