1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# -*- coding: utf-8 -*-
from casadi import *
import numpy as N
import matplotlib.pyplot as plt
'''
Demonstration on how to construct a fixed-step implicit Runge-Kutta integrator
@author: Joel Andersson, KU Leuven 2013
'''
# End time
tf = 10.0
# Dimensions
nx = 3
np = 1
# Declare variables
x = SX.sym('x', nx) # state
p = SX.sym('u', np) # control
# ODE right hand side function
ode = vertcat((1 - x[1]*x[1])*x[0] - x[1] + p, \
x[0], \
x[0]*x[0] + x[1]*x[1] + p*p)
dae = {'x':x, 'p':p, 'ode':ode}
f = Function('f', [x, p], [ode])
# Number of finite elements
n = 100
# Size of the finite elements
h = tf/n
# Degree of interpolating polynomial
d = 4
# Choose collocation points
tau_root = [0] + collocation_points(d, 'legendre')
# Coefficients of the collocation equation
C = N.zeros((d+1,d+1))
# Coefficients of the continuity equation
D = N.zeros(d+1)
# Dimensionless time inside one control interval
tau = SX.sym('tau')
# For all collocation points
for j in range(d+1):
# Construct Lagrange polynomials to get the polynomial basis at the collocation point
L = 1
for r in range(d+1):
if r != j:
L *= (tau-tau_root[r])/(tau_root[j]-tau_root[r])
# Evaluate the polynomial at the final time to get the coefficients of the continuity equation
lfcn = Function('lfcn', [tau], [L])
D[j] = lfcn(1.0)
# Evaluate the time derivative of the polynomial at all collocation points to get the coefficients of the continuity equation
tfcn = Function('tfcn', [tau], [tangent(L,tau)])
for r in range(d+1): C[j,r] = tfcn(tau_root[r])
# Total number of variables for one finite element
X0 = MX.sym('X0',nx)
P = MX.sym('P',np)
V = MX.sym('V',d*nx)
# Get the state at each collocation point
X = [X0] + vertsplit(V,[r*nx for r in range(d+1)])
# Get the collocation quations (that define V)
V_eq = []
for j in range(1,d+1):
# Expression for the state derivative at the collocation point
xp_j = 0
for r in range (d+1):
xp_j += C[r,j]*X[r]
# Append collocation equations
f_j = f(X[j],P)
V_eq.append(h*f_j - xp_j)
# Concatenate constraints
V_eq = vertcat(*V_eq)
# Root-finding function, implicitly defines V as a function of X0 and P
vfcn = Function('vfcn', [V, X0, P], [V_eq])
# Convert to SX to decrease overhead
vfcn_sx = vfcn.expand()
# Create a implicit function instance to solve the system of equations
ifcn = rootfinder('ifcn', 'newton', vfcn_sx)
V = ifcn(MX(),X0,P)
X = [X0 if r==0 else V[(r-1)*nx:r*nx] for r in range(d+1)]
# Get an expression for the state at the end of the finie element
XF = 0
for r in range(d+1):
XF += D[r]*X[r]
# Get the discrete time dynamics
F = Function('F', [X0,P],[XF])
# Do this iteratively for all finite elements
X = X0
for i in range(n):
X = F(X,P)
# Fixed-step integrator
irk_integrator = Function('irk_integrator', {'x0':X0, 'p':P, 'xf':X},
integrator_in(), integrator_out())
# Create a convensional integrator for reference
ref_integrator = integrator('ref_integrator', 'cvodes', dae, 0, tf)
# Test values
x0_val = N.array([0,1,0])
p_val = 0.2
# Make sure that both integrators give consistent results
for F in (irk_integrator,ref_integrator):
print('-------')
print('Testing ' + F.name())
print('-------')
# Generate a new function that calculates forward and reverse directional derivatives
dF = F.factory('dF', ['x0', 'p', 'fwd:x0', 'fwd:p', 'adj:xf'],
['xf', 'fwd:xf', 'adj:x0', 'adj:p']);
arg = {}
# Pass arguments
arg['x0'] = x0_val
arg['p'] = p_val
# Forward sensitivity analysis, first direction: seed p and x0[0]
arg['fwd_x0'] = [1,0,0]
arg['fwd_p'] = 1
# Adjoint sensitivity analysis, seed xf[2]
arg['adj_xf'] = [0,0,1]
# Integrate
res = dF(**arg)
# Get the nondifferentiated results
print('%30s = %s' % ('xf', res['xf']))
# Get the forward sensitivities
print('%30s = %s' % ('d(xf)/d(p)+d(xf)/d(x0[0])', res['fwd_xf']))
# Get the adjoint sensitivities
print('%30s = %s' % ('d(xf[2])/d(x0)', res['adj_x0']))
print('%30s = %s' % ('d(xf[2])/d(p)', res['adj_p']))
|