File: mhe_spring_damper.py

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (214 lines) | stat: -rw-r--r-- 9,189 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#
#     MIT No Attribution
#
#     Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
#     Permission is hereby granted, free of charge, to any person obtaining a copy of this
#     software and associated documentation files (the "Software"), to deal in the Software
#     without restriction, including without limitation the rights to use, copy, modify,
#     merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
#     permit persons to whom the Software is furnished to do so.
#
#     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#     INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#     PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#     HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#     OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#

# For documentation about this examples, check http://docs.casadi.org/documents/mhe_spring_damper.pdf

from casadi import *
import numpy as NP
import matplotlib.pyplot as plt
import time
from casadi.tools import *
from scipy import linalg, matrix
plt.interactive(True)

NP.random.seed(0)

# Settings of the filter
N = 10 # Horizon length
dt = 0.05; # Time step

sigma_p = 0.005 # Standard deviation of the position measurements
sigma_w = 0.1 # Standard deviation for the process noise
R = DM(1/sigma_p**2) # resulting weighting matrix for the position measurements
Q = DM(1/sigma_w**2) # resulting weighting matrix for the process noise

Nsimulation = 1000 # Lenght of the simulation

# Parameters of the system
m = 1 # The weight of the mass
k = 1 # The spring constant
c = 0.5 # The damping of the system
# The state
states = struct_symSX(["x","dx"]) # Full state vector of the system: position x and velocity dx
Nstates = states.size # Number of states
# Set up some aliases
x,dx = states[...]

# The control input
controls = struct_symSX(["F"]) # Full control vector of the system: Input force F
Ncontrols = controls.size # Number of control inputs
# Set up some aliases
F, = controls[...]

# Disturbances
disturbances = struct_symSX(["w"]) # Process noise vector
Ndisturbances = disturbances.size # Number of disturbances
# Set up some aliases
w, = disturbances[...]

# Measurements
measurements = struct_symSX(["y"]) # Measurement vector
Nmeas = measurements.size # Number of measurements
# Set up some aliases
y, = measurements[...]

# Create Structure for the entire horizon

# Structure that will be degrees of freedom for the optimizer
shooting = struct_symSX([(entry("X",repeat=N,struct=states),entry("W",repeat=N-1,struct=disturbances))])
# Structure that will be fixed parameters for the optimizer
parameters = struct_symSX([(entry("U",repeat=N-1,struct=controls),entry("Y",repeat=N,struct=measurements),entry("S",shape=(Nstates,Nstates)),entry("x0",shape=(Nstates,1)))])
S = parameters["S"]
x0 = parameters["x0"]
# Define the ODE right hand side
rhs = struct_SX(states)
rhs["x"] = dx
rhs["dx"] = (-k*x-c*dx+F)/m+w

f = Function('f', [states,controls,disturbances],[rhs])

# Build an integrator for this system: Runge Kutta 4 integrator
k1 = f(states,controls,disturbances)
k2 = f(states+dt/2.0*k1,controls,disturbances)
k3 = f(states+dt/2.0*k2,controls,disturbances)
k4 = f(states+dt*k3,controls,disturbances)

states_1 = states+dt/6.0*(k1+2*k2+2*k3+k4)
phi = Function('phi', [states, controls, disturbances], [states_1], ['x', 'u', 'd'], ['x1'])
PHI = phi.factory('PHI', ['x', 'u', 'd'], ['jac:x1:x'])
# Define the measurement system
h = Function('h', [states], [x], ['x'], ['y']) # We have measurements of the position
H = h.factory('H', ['x'], ['jac:y:x'])
# Build the objective
obj = 0
# First the arrival cost
obj += mtimes([(shooting["X",0]-parameters["x0"]).T,S,(shooting["X",0]-parameters["x0"])])
#Next the cost for the measurement noise
for i in range(N):
  vm = h(shooting["X",i])-parameters["Y",i]
  obj += mtimes([vm.T,R,vm])
#And also the cost for the process noise
for i in range(N-1):
  obj += mtimes([shooting["W",i].T,Q,shooting["W",i]])

# Build the multiple shooting constraints
g = []
for i in range(N-1):
  g.append( shooting["X",i+1] - phi(shooting["X",i],parameters["U",i],shooting["W",i]) )

# Formulate the NLP
nlp = {'x':shooting, 'p':parameters, 'f':obj, 'g':vertcat(*g)}

# Make a simulation to create the data for the problem
simulated_X = DM.zeros(Nstates,Nsimulation)
simulated_X[:,0] = DM([1,0]) # Initial state
t = NP.linspace(0,(Nsimulation-1)*dt,Nsimulation) # Time grid
simulated_U = DM(cos(t[0:-1])).T # control input for the simulation
simulated_U[:,int(Nsimulation/2):] = 0.0
simulated_W = DM(sigma_w*NP.random.randn(Ndisturbances,Nsimulation-1)) # Process noise for the simulation
for i in range(Nsimulation-1):
  simulated_X[:,i+1] = phi(simulated_X[:,i], simulated_U[:,i], simulated_W[:,i])
#Create the measurements from these states
simulated_Y = DM.zeros(Nmeas,Nsimulation) # Holder for the measurements
for i in range(Nsimulation):
  simulated_Y[:,i] = h(simulated_X[:,i])
# Add noise the the position measurements
simulated_Y += sigma_p*NP.random.randn(simulated_Y.shape[0],simulated_Y.shape[1])

#The initial estimate and related covariance, which will be used for the arrival cost
sigma_x0 = 0.01
P = sigma_x0**2*DM.eye(Nstates)
x0 = simulated_X[:,0] + sigma_x0*NP.random.randn(Nstates,1)
# Create the solver
opts = {"ipopt.print_level":0, "print_time": False, 'ipopt.max_iter':100}
nlpsol = nlpsol("nlpsol", "ipopt", nlp, opts)

# Create a holder for the estimated states and disturbances
estimated_X= DM.zeros(Nstates,Nsimulation)
estimated_W = DM.zeros(Ndisturbances,Nsimulation-1)
# For the first instance we run the filter, we need to initialize it.
current_parameters = parameters(0)
current_parameters["U",lambda x: horzcat(*x)] = simulated_U[:,0:N-1]
current_parameters["Y",lambda x: horzcat(*x)] = simulated_Y[:,0:N]
current_parameters["S"] = linalg.inv(P) # Arrival cost is the inverse of the initial covariance
current_parameters["x0"] = x0
initialisation_state = shooting(0)
initialisation_state["X",lambda x: horzcat(*x)] = simulated_X[:,0:N]
res = nlpsol(p=current_parameters, x0=initialisation_state, lbg=0, ubg=0)

# Get the solution
solution = shooting(res["x"])
estimated_X[:,0:N] = solution["X",lambda x: horzcat(*x)]
estimated_W[:,0:N-1] = solution["W",lambda x: horzcat(*x)]

# Now make a loop for the rest of the simulation
for i in range(1,Nsimulation-N+1):

  # Update the arrival cost, using linearisations around the estimate of MHE at the beginning of the horizon (according to the 'Smoothed EKF Update'): first update the state and covariance with the measurement that will be deleted, and next propagate the state and covariance because of the shifting of the horizon
  print("step %d/%d (%s)" % (i, Nsimulation-N , nlpsol.stats()["return_status"]))
  H0 = H(solution["X",0])
  K = mtimes([P,H0.T,linalg.inv(mtimes([H0,P,H0.T])+R)])
  P = mtimes((DM.eye(Nstates)-mtimes(K,H0)),P)
  h0 = h(solution["X",0])
  x0 = x0 + mtimes(K, current_parameters["Y",0]-h0-mtimes(H0,x0-solution["X",0]))
  x0 = phi(x0, current_parameters["U",0], solution["W",0])
  F = PHI(solution["X",0], current_parameters["U",0], solution["W",0])
  P = mtimes([F,P,F.T]) + linalg.inv(Q)
  # Get the measurements and control inputs
  current_parameters["U",lambda x: horzcat(*x)] = simulated_U[:,i:i+N-1]
  current_parameters["Y",lambda x: horzcat(*x)] = simulated_Y[:,i:i+N]
  current_parameters["S"] = linalg.inv(P)
  current_parameters["x0"] = x0
  # Initialize the system with the shifted solution
  initialisation_state["W",lambda x: horzcat(*x),0:N-2] = estimated_W[:,i:i+N-2] # The shifted solution for the disturbances
  initialisation_state["W",N-2] = DM.zeros(Ndisturbances,1) # The last node for the disturbances is initialized with zeros
  initialisation_state["X",lambda x: horzcat(*x),0:N-1] = estimated_X[:,i:i+N-1] # The shifted solution for the state estimates
  # The last node for the state is initialized with a forward simulation
  phi0 = phi(initialisation_state["X",N-1], current_parameters["U",-1], initialisation_state["W",-1])
  initialisation_state["X",N-1] = phi0
  # And now initialize the solver and solve the problem
  res = nlpsol(p=current_parameters, x0=initialisation_state, lbg=0, ubg=0)
  solution = shooting(res["x"])

  # Now get the state estimate. Note that we are only interested in the last node of the horizon
  estimated_X[:,N-1+i] = solution["X",N-1]
  estimated_W[:,N-2+i] = solution["W",N-2]
# Plot the results
plt.figure(1)
plt.clf()
plt.plot(t,vec(estimated_X[0,:]),'b--')
plt.plot(t,vec(simulated_X[0,:]),'r--')
plt.title("Position")
plt.xlabel('Time')
plt.legend(['Estimated position','Real position'])
plt.grid()

plt.figure(2)
plt.clf()
plt.plot(t,vec(estimated_X[0,:]-simulated_X[0,:]),'b--')
plt.title("Position error")
plt.xlabel('Time')
plt.legend(['Error between estimated and real position'])
plt.grid()

plt.show()

error = estimated_X[0,:]-simulated_X[0,:]
print(mtimes(error,error.T))
assert(mtimes(error,error.T)<0.01)