1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# For documentation about this examples, check http://docs.casadi.org/documents/mhe_spring_damper.pdf
from casadi import *
import numpy as NP
import matplotlib.pyplot as plt
import time
from casadi.tools import *
from scipy import linalg, matrix
plt.interactive(True)
NP.random.seed(0)
# Settings of the filter
N = 10 # Horizon length
dt = 0.05; # Time step
sigma_p = 0.005 # Standard deviation of the position measurements
sigma_w = 0.1 # Standard deviation for the process noise
R = DM(1/sigma_p**2) # resulting weighting matrix for the position measurements
Q = DM(1/sigma_w**2) # resulting weighting matrix for the process noise
Nsimulation = 1000 # Lenght of the simulation
# Parameters of the system
m = 1 # The weight of the mass
k = 1 # The spring constant
c = 0.5 # The damping of the system
# The state
states = struct_symSX(["x","dx"]) # Full state vector of the system: position x and velocity dx
Nstates = states.size # Number of states
# Set up some aliases
x,dx = states[...]
# The control input
controls = struct_symSX(["F"]) # Full control vector of the system: Input force F
Ncontrols = controls.size # Number of control inputs
# Set up some aliases
F, = controls[...]
# Disturbances
disturbances = struct_symSX(["w"]) # Process noise vector
Ndisturbances = disturbances.size # Number of disturbances
# Set up some aliases
w, = disturbances[...]
# Measurements
measurements = struct_symSX(["y"]) # Measurement vector
Nmeas = measurements.size # Number of measurements
# Set up some aliases
y, = measurements[...]
# Create Structure for the entire horizon
# Structure that will be degrees of freedom for the optimizer
shooting = struct_symSX([(entry("X",repeat=N,struct=states),entry("W",repeat=N-1,struct=disturbances))])
# Structure that will be fixed parameters for the optimizer
parameters = struct_symSX([(entry("U",repeat=N-1,struct=controls),entry("Y",repeat=N,struct=measurements),entry("S",shape=(Nstates,Nstates)),entry("x0",shape=(Nstates,1)))])
S = parameters["S"]
x0 = parameters["x0"]
# Define the ODE right hand side
rhs = struct_SX(states)
rhs["x"] = dx
rhs["dx"] = (-k*x-c*dx+F)/m+w
f = Function('f', [states,controls,disturbances],[rhs])
# Build an integrator for this system: Runge Kutta 4 integrator
k1 = f(states,controls,disturbances)
k2 = f(states+dt/2.0*k1,controls,disturbances)
k3 = f(states+dt/2.0*k2,controls,disturbances)
k4 = f(states+dt*k3,controls,disturbances)
states_1 = states+dt/6.0*(k1+2*k2+2*k3+k4)
phi = Function('phi', [states, controls, disturbances], [states_1], ['x', 'u', 'd'], ['x1'])
PHI = phi.factory('PHI', ['x', 'u', 'd'], ['jac:x1:x'])
# Define the measurement system
h = Function('h', [states], [x], ['x'], ['y']) # We have measurements of the position
H = h.factory('H', ['x'], ['jac:y:x'])
# Build the objective
obj = 0
# First the arrival cost
obj += mtimes([(shooting["X",0]-parameters["x0"]).T,S,(shooting["X",0]-parameters["x0"])])
#Next the cost for the measurement noise
for i in range(N):
vm = h(shooting["X",i])-parameters["Y",i]
obj += mtimes([vm.T,R,vm])
#And also the cost for the process noise
for i in range(N-1):
obj += mtimes([shooting["W",i].T,Q,shooting["W",i]])
# Build the multiple shooting constraints
g = []
for i in range(N-1):
g.append( shooting["X",i+1] - phi(shooting["X",i],parameters["U",i],shooting["W",i]) )
# Formulate the NLP
nlp = {'x':shooting, 'p':parameters, 'f':obj, 'g':vertcat(*g)}
# Make a simulation to create the data for the problem
simulated_X = DM.zeros(Nstates,Nsimulation)
simulated_X[:,0] = DM([1,0]) # Initial state
t = NP.linspace(0,(Nsimulation-1)*dt,Nsimulation) # Time grid
simulated_U = DM(cos(t[0:-1])).T # control input for the simulation
simulated_U[:,int(Nsimulation/2):] = 0.0
simulated_W = DM(sigma_w*NP.random.randn(Ndisturbances,Nsimulation-1)) # Process noise for the simulation
for i in range(Nsimulation-1):
simulated_X[:,i+1] = phi(simulated_X[:,i], simulated_U[:,i], simulated_W[:,i])
#Create the measurements from these states
simulated_Y = DM.zeros(Nmeas,Nsimulation) # Holder for the measurements
for i in range(Nsimulation):
simulated_Y[:,i] = h(simulated_X[:,i])
# Add noise the the position measurements
simulated_Y += sigma_p*NP.random.randn(simulated_Y.shape[0],simulated_Y.shape[1])
#The initial estimate and related covariance, which will be used for the arrival cost
sigma_x0 = 0.01
P = sigma_x0**2*DM.eye(Nstates)
x0 = simulated_X[:,0] + sigma_x0*NP.random.randn(Nstates,1)
# Create the solver
opts = {"ipopt.print_level":0, "print_time": False, 'ipopt.max_iter':100}
nlpsol = nlpsol("nlpsol", "ipopt", nlp, opts)
# Create a holder for the estimated states and disturbances
estimated_X= DM.zeros(Nstates,Nsimulation)
estimated_W = DM.zeros(Ndisturbances,Nsimulation-1)
# For the first instance we run the filter, we need to initialize it.
current_parameters = parameters(0)
current_parameters["U",lambda x: horzcat(*x)] = simulated_U[:,0:N-1]
current_parameters["Y",lambda x: horzcat(*x)] = simulated_Y[:,0:N]
current_parameters["S"] = linalg.inv(P) # Arrival cost is the inverse of the initial covariance
current_parameters["x0"] = x0
initialisation_state = shooting(0)
initialisation_state["X",lambda x: horzcat(*x)] = simulated_X[:,0:N]
res = nlpsol(p=current_parameters, x0=initialisation_state, lbg=0, ubg=0)
# Get the solution
solution = shooting(res["x"])
estimated_X[:,0:N] = solution["X",lambda x: horzcat(*x)]
estimated_W[:,0:N-1] = solution["W",lambda x: horzcat(*x)]
# Now make a loop for the rest of the simulation
for i in range(1,Nsimulation-N+1):
# Update the arrival cost, using linearisations around the estimate of MHE at the beginning of the horizon (according to the 'Smoothed EKF Update'): first update the state and covariance with the measurement that will be deleted, and next propagate the state and covariance because of the shifting of the horizon
print("step %d/%d (%s)" % (i, Nsimulation-N , nlpsol.stats()["return_status"]))
H0 = H(solution["X",0])
K = mtimes([P,H0.T,linalg.inv(mtimes([H0,P,H0.T])+R)])
P = mtimes((DM.eye(Nstates)-mtimes(K,H0)),P)
h0 = h(solution["X",0])
x0 = x0 + mtimes(K, current_parameters["Y",0]-h0-mtimes(H0,x0-solution["X",0]))
x0 = phi(x0, current_parameters["U",0], solution["W",0])
F = PHI(solution["X",0], current_parameters["U",0], solution["W",0])
P = mtimes([F,P,F.T]) + linalg.inv(Q)
# Get the measurements and control inputs
current_parameters["U",lambda x: horzcat(*x)] = simulated_U[:,i:i+N-1]
current_parameters["Y",lambda x: horzcat(*x)] = simulated_Y[:,i:i+N]
current_parameters["S"] = linalg.inv(P)
current_parameters["x0"] = x0
# Initialize the system with the shifted solution
initialisation_state["W",lambda x: horzcat(*x),0:N-2] = estimated_W[:,i:i+N-2] # The shifted solution for the disturbances
initialisation_state["W",N-2] = DM.zeros(Ndisturbances,1) # The last node for the disturbances is initialized with zeros
initialisation_state["X",lambda x: horzcat(*x),0:N-1] = estimated_X[:,i:i+N-1] # The shifted solution for the state estimates
# The last node for the state is initialized with a forward simulation
phi0 = phi(initialisation_state["X",N-1], current_parameters["U",-1], initialisation_state["W",-1])
initialisation_state["X",N-1] = phi0
# And now initialize the solver and solve the problem
res = nlpsol(p=current_parameters, x0=initialisation_state, lbg=0, ubg=0)
solution = shooting(res["x"])
# Now get the state estimate. Note that we are only interested in the last node of the horizon
estimated_X[:,N-1+i] = solution["X",N-1]
estimated_W[:,N-2+i] = solution["W",N-2]
# Plot the results
plt.figure(1)
plt.clf()
plt.plot(t,vec(estimated_X[0,:]),'b--')
plt.plot(t,vec(simulated_X[0,:]),'r--')
plt.title("Position")
plt.xlabel('Time')
plt.legend(['Estimated position','Real position'])
plt.grid()
plt.figure(2)
plt.clf()
plt.plot(t,vec(estimated_X[0,:]-simulated_X[0,:]),'b--')
plt.title("Position error")
plt.xlabel('Time')
plt.legend(['Error between estimated and real position'])
plt.grid()
plt.show()
error = estimated_X[0,:]-simulated_X[0,:]
print(mtimes(error,error.T))
assert(mtimes(error,error.T)<0.01)
|