1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
from pylab import *
from scipy.linalg import sqrtm
from casadi import *
from casadi.tools import *
# System states
states = struct_symSX(["x","y","dx","dy"])
x,y,dx,dy = states[...]
# System controls
controls = struct_symSX(["u","v"])
u,v = controls[...]
# System parameters
parameters = struct_symSX(["k","c","beta"])
k,c,beta = parameters[...]
# Provide some numerical values
parameters_ = parameters()
parameters_["k"] = 10
parameters_["beta"] = 1
parameters_["c"] = 1
vel = vertcat(dx,dy)
p = vertcat(x,y)
q = vertcat(u,v)
# System dynamics
F = -k*(p-q) - beta*v*sqrt(sumsqr(vel) + c**2)
# System right hand side
rhs = struct_SX(states)
rhs["x"] = dx
rhs["y"] = dy
rhs["dx"] = F[0]
rhs["dy"] = F[1]
# f = SX.fun("f", controldaeIn(x=states,p=parameters,u=controls),daeOut(ode=rhs))
# # Simulation output grid
# N = 100
# tgrid = linspace(0,10.0,N)
# # ControlSimulator will output on each node of the timegrid
# opts = {}
# opts["integrator"] = "cvodes"
# opts["integrator_options"] = {"abstol":1e-10,"reltol":1e-10}
# csim = ControlSimulator("csim", f, tgrid, opts)
# x0 = states(0)
# # Create input profile
# controls_ = controls.repeated(csim.getInput("u"))
# controls_[0,"u"] = 1 # Kick the system with u=1 at the start
# controls_[N/2,"v"] = 2 # Kick the system with v=2 at half the simulation time
# # Pure simulation
# csim.setInput(x0,"x0")
# csim.setInput(parameters_,"p")
# csim.setInput(controls_,"u")
# csim.evaluate()
# output = states.repeated(csim.getOutput())
# # Plot all states
# for k in states.keys():
# plot(tgrid,output[vertcat,:,k])
# xlabel("t")
# legend(tuple(states.keys()))
# print "xf=", output[-1]
# # The remainder of this file deals with methods to calculate the state covariance matrix as it propagates through the system dynamics
# # === Method 1: integrator sensitivity ===
# # PF = d(I)/d(x0) P0 [d(I)/d(x0)]^T
# P0 = states.squared()
# P0[:,:] = 0.01*DM.eye(states.size)
# P0["x","dy"] = P0["dy","x"] = 0.002
# # Not supported in current revision, cf. #929
# # J = csim.jacobian_old(csim.index_in("x0"),csim.index_out("xf"))
# # J.setInput(x0,"x0")
# # J.setInput(parameters_,"p")
# # J.setInput(controls_,"u")
# # J.evaluate()
# # Jk = states.squared_repeated(J.getOutput())
# # F = Jk[-1]
# # PF_method1 = mtimes([F,P0,F.T])
# # print "State cov (method 1) = ", PF_method1
# # === Method 2: Lyapunov equations ===
# # P' = A.P + P.A^T
# states_aug = struct_symSX([
# entry("orig",sym=states),
# entry("P",shapestruct=(states,states))
# ])
# A = jacobian(rhs,states)
# rhs_aug = struct_SX(states_aug)
# rhs_aug["orig"] = rhs
# rhs_aug["P"] = mtimes(A,states_aug["P"]) + mtimes(states_aug["P"],A.T)
# f_aug = SX.fun("f_aug", controldaeIn(x=states_aug,p=parameters,u=controls),daeOut(ode=rhs_aug))
# csim_aug = ControlSimulator("csim_aug", f_aug, tgrid, {"integrator":"cvodes"})
# states_aug(csim_aug.getInput("x0"))["orig"] = x0
# states_aug(csim_aug.getInput("x0"))["P"] = P0
# csim_aug.setInput(parameters_,"p")
# csim_aug.setInput(controls_,"u")
# csim_aug.evaluate()
# output = states_aug.repeated(csim_aug.getOutput())
# PF_method2 = output[-1,"P"]
# print "State cov (method 2) = ", PF_method2
# # === Method 3: Unscented propagation ===
# # Sample and simulate 2n+1 initial points
# n = states.size
# W0 = 0
# x0 = DM(x0)
# W = DM([ W0 ] + [(1.0-W0)/2/n for j in range(2*n)])
# sqm = sqrtm(n/(1.0-W0)*DM(P0)).real
# sample_x = [ x0 ] + [x0+sqm[:,i] for i in range(n)] + [x0-sqm[:,i] for i in range(n)]
# csim.setInput(parameters_,"p")
# csim.setInput(controls_,"u")
# simulated_x = [] # This can be parallelised
# for x0_ in sample_x:
# csim.setInput(x0_,"x0")
# csim.evaluate()
# simulated_x.append(csim.getOutput()[-1,:])
# simulated_x = vertcat(simulated_x).T
# Xf_mean = mtimes(simulated_x,W)
# x_dev = simulated_x-mtimes(Xf_mean,DM.ones(1,2*n+1))
# PF_method3 = mtimes([x_dev,diag(W),x_dev.T])
# print "State cov (method 3) = ", PF_method3
# show()
|