File: sysid.py

package info (click to toggle)
casadi 3.7.0%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,964 kB
  • sloc: cpp: 114,229; python: 35,462; xml: 1,946; ansic: 859; makefile: 257; sh: 114; f90: 63; perl: 9
file content (166 lines) | stat: -rw-r--r-- 5,164 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#
#     MIT No Attribution
#
#     Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
#     Permission is hereby granted, free of charge, to any person obtaining a copy of this
#     software and associated documentation files (the "Software"), to deal in the Software
#     without restriction, including without limitation the rights to use, copy, modify,
#     merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
#     permit persons to whom the Software is furnished to do so.
#
#     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#     INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#     PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#     HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#     OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
from casadi import *

# In this example, we fit a nonlinear model to measurements
#
# This example uses more advanced constructs than the vdp* examples:
# Since the number of control intervals is potentially very large here,
# we use memory-efficient Map and MapAccum, in combination with
# codegeneration.
#
# We will be working with a 2-norm objective:
# || y_measured - y_simulated ||_2^2
#
# This form is well-suited for the Gauss-Newton Hessian approximation.

############ SETTINGS #####################
N = 10000  # Number of samples
fs = 610.1 # Sampling frequency [hz]

param_truth = DM([5.625e-6,2.3e-4,1,4.69])
param_guess = DM([5,2,1,5])
scale = vertcat(1e-6,1e-4,1,1)

############ MODELING #####################
y  = MX.sym('y')
dy = MX.sym('dy')
u  = MX.sym('u')

states = vertcat(y,dy);
controls = u;

M = MX.sym("x")
c = MX.sym("c")
k = MX.sym("k")
k_NL = MX.sym("k_NL")

params = vertcat(M,c,k,k_NL)

rhs = vertcat(dy , (u-k_NL*y**3-k*y-c*dy)/M)

# Form an ode function
ode = Function('ode',[states,controls,params],[rhs])

############ Creating a simulator ##########
N_steps_per_sample = 10
dt = 1/fs/N_steps_per_sample

# Build an integrator for this system: Runge Kutta 4 integrator
k1 = ode(states,controls,params)
k2 = ode(states+dt/2.0*k1,controls,params)
k3 = ode(states+dt/2.0*k2,controls,params)
k4 = ode(states+dt*k3,controls,params)

states_final = states+dt/6.0*(k1+2*k2+2*k3+k4)

# Create a function that simulates one step propagation in a sample
one_step = Function('one_step',[states, controls, params],[states_final]);

X = states;

for i in range(N_steps_per_sample):
  X = one_step(X, controls, params)

# Create a function that simulates all step propagation on a sample
one_sample = Function('one_sample',[states, controls, params], [X])

############ Simulating the system ##########
all_samples = one_sample.mapaccum("all_samples", N)

# Choose an excitation signal
numpy.random.seed(0)
u_data = DM(0.1*numpy.random.random(N))

x0 = DM([0,0])
X_measured = all_samples(x0, u_data, repmat(param_truth,1,N))

y_data = X_measured[0,:].T

# You may add some noise here
#y_data+= 0.001*numpy.random.random(N)
# When noise is absent, the fit will be perfect.

# Use just-in-time compilation to speed up the evaluation
if Importer.has_plugin('clang'):
  with_jit = True
  compiler = 'clang'
elif Importer.has_plugin('shell'):
  with_jit = True
  compiler = 'shell'
else:
  print("WARNING; running without jit. This may result in very slow evaluation times")
  with_jit = False
  compiler = ''

############ Create a Gauss-Newton solver ##########
def gauss_newton(e,nlp,V):
  J = jacobian(e,V)
  H = triu(mtimes(J.T, J))
  sigma = MX.sym("sigma")
  hessLag = Function('nlp_hess_l',{'x':V,'lam_f':sigma, 'hess_gamma_x_x':sigma*H},
                     ['x','p','lam_f','lam_g'], ['hess_gamma_x_x'],
                     dict(jit=with_jit, compiler=compiler))
  return nlpsol("solver","ipopt", nlp, dict(hess_lag=hessLag, jit=with_jit, compiler=compiler))

############ Identifying the simulated system: single shooting strategy ##########

# Note, it is in general a good idea to scale your decision variables such
# that they are in the order of ~0.1..100
X_symbolic = all_samples(x0, u_data, repmat(params*scale,1,N))

e = y_data-X_symbolic[0,:].T;
nlp = {'x':params, 'f':0.5*dot(e,e)}

solver = gauss_newton(e,nlp, params)

sol = solver(x0=param_guess)

print(sol["x"]*scale)

assert(norm_inf(sol["x"]*scale-param_truth)<1e-8)

############ Identifying the simulated system: multiple shooting strategy ##########

# All states become decision variables
X = MX.sym("X", 2, N)

Xn = one_sample.map(N, 'openmp')(X, u_data.T, repmat(params*scale,1,N))

gaps = Xn[:,:-1]-X[:,1:]

e = y_data-Xn[0,:].T;

V = veccat(params, X)

nlp = {'x':V, 'f':0.5*dot(e,e),'g': vec(gaps)}

# Multipleshooting allows for careful initialization
yd = np.diff(y_data,axis=0)*fs
X_guess = horzcat(y_data , vertcat(yd,yd[-1])).T;

x0 = veccat(param_guess,X_guess)

solver = gauss_newton(e,nlp, V)

sol = solver(x0=x0,lbg=0,ubg=0)

print(sol["x"][:4]*scale)

assert(norm_inf(sol["x"][:4]*scale-param_truth)<1e-8)