1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
# Python
from casadi import *
# Formulate the DAE
x=SX.sym('x',2)
z=SX.sym('z')
u=SX.sym('u')
f=vertcat(z*x[0]-x[1]+u,\
x[0])
g=x[1]**2+z-1
h=x[0]**2+x[1]**2+u**2
dae=dict(x=x,p=u,ode=f,\
z=z,alg=g,quad=h)
# Create solver instance
T = 10. # end time
N = 20 # discretization
op=dict(t0=0,tf=T/N)
F=integrator('F',\
'idas',dae,op)
# Empty NLP
w=[]; lbw=[]; ubw=[]
G=[]; J=0
# Initial conditions
Xk=MX.sym('X0',2)
w+=[Xk]
lbw+=[0,1]
ubw+=[0,1]
for k in range(1,N+1):
# Local control
name='U'+str(k-1)
Uk=MX.sym(name)
w+=[Uk]
lbw+=[-1]
ubw+=[ 1]
# Call integrator
Fk=F(x0=Xk,p=Uk)
J+=Fk['qf']
# Local state
name='X'+str(k)
Xk=MX.sym(name,2)
w+=[Xk]
lbw+=[-.25,-inf]
ubw+=[ inf, inf]
G+=[Fk['xf']-Xk]
# Create NLP solver
nlp=dict(f=J,\
g=vertcat(*G),\
x=vertcat(*w))
S=nlpsol('S',\
'blocksqp',nlp)
# Solve NLP
r=S(lbx=lbw,ubx=ubw,\
x0=0,lbg=0,ubg=0)
print(r['x'])
|