1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
.. _sec-function:
Function objects
================
.. include:: defs.rst
|casadi| allows the user to create function objects, in C++ terminology often referred to as *functors*. This includes functions that are defined by a symbolic expression, ODE/DAE integrators, QP solvers, NLP solvers etc.
Function objects are typically created with the syntax:
.. code-block:: none
f = functionname(name, arguments, ..., [options])
The name is mainly a display name that will show up in e.g. error messages or as comments in generated C code. This is followed by a set of arguments, which is class dependent. Finally, the user can pass an options structure for customizing the behavior of the class. The options structure is a dictionary type in Python, a struct in MATLAB or |casadi|'s ``Dict`` type in C++.
A ``Function`` can be constructed by passing a list of input expressions and a list of output expressions:
.. side-by-side::
.. exec-block:: python
x = SX.sym('x',2)
y = SX.sym('y')
f = Function('f',[x,y],\
[x,sin(y)*x])
print(f)
&&
.. exec-block:: octave
x = SX.sym('x',2);
y = SX.sym('y');
f = Function('f',{x,y},...
{x,sin(y)*x});
disp(f)
which defines a function
:math:`f : \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{2} \times \mathbb{R}^{2}, \quad (x,y) \mapsto (x,\sin(y) x)`.
Note that all function objects in |casadi|, including the above, are multiple matrix-valued input, multiple, matrix-valued output.
|MX| expression graphs work the same way:
.. side-by-side::
.. exec-block:: python
x = MX.sym('x',2)
y = MX.sym('y')
f = Function('f',[x,y],\
[x,sin(y)*x])
print(f)
&&
.. exec-block:: octave
x = MX.sym('x',2);
y = MX.sym('y');
f = Function('f',{x,y},...
{x,sin(y)*x});
disp(f)
When creating a ``Function`` from expressions like that, it is always advisory to *name* the inputs and outputs as follows:
.. side-by-side::
.. exec-block:: python
x = MX.sym('x',2) [hidden]
y = MX.sym('y') [hidden]
f = Function('f',[x,y],\
[x,sin(y)*x],\
['x','y'],['r','q'])
print(f)
&&
.. exec-block:: octave
x = MX.sym('x',2); [hidden]
y = MX.sym('y'); [hidden]
f = Function('f',{x,y},...
{x,sin(y)*x},...
{'x','y'},{'r','q'});
disp(f)
Naming inputs and outputs is preferred for a number of reasons:
* No need to remember the number or order of arguments
* Inputs or outputs that are absent can be left unset
* More readable and less error prone syntax.
For ``Function`` instances -- to be encountered later -- that are *not* created directly from expressions,
the inputs and outputs are named automatically.
Calling function objects
------------------------
|MX| expressions may contain calls to ``Function``-derived functions. Calling a function object is both done for the numerical evaluation and, by passing symbolic arguments, for embedding a *call* to the function object into an expression graph (cf. also :numref:`sec-integrator`).
To call a function object, you either pass the argument in the correct order:
.. side-by-side::
.. exec-block:: python
x = MX.sym('x',2) [hidden]
y = MX.sym('y') [hidden]
f = Function('f',[x,y],[x,sin(y)*x],['x','y'],['r','q']) [hidden]
r0, q0 = f(1.1,3.3)
print('r0:',r0)
print('q0:',q0)
&&
.. exec-block:: octave
x = MX.sym('x',2); [hidden]
y = MX.sym('y'); [hidden]
f = Function('f',{x,y},{x,sin(y)*x},{'x','y'},{'r','q'}); [hidden]
[r0, q0] = f(1.1,3.3);
disp(r0)
disp(q0)
or the arguments and their names as follows, which will result in a dictionary (``dict`` in Python, ``struct`` in MATLAB and ``std::map<std::string, MatrixType>`` in C++):
.. side-by-side::
.. exec-block:: python
x = MX.sym('x',2) [hidden]
y = MX.sym('y') [hidden]
f = Function('f',[x,y],[x,sin(y)*x],['x','y'],['r','q']) [hidden]
res = f(x=1.1, y=3.3)
print('res:', res)
&&
.. exec-block:: octave
x = MX.sym('x',2); [hidden]
y = MX.sym('y'); [hidden]
f = Function('f',{x,y},{x,sin(y)*x},{'x','y'},{'r','q'}); [hidden]
res = f('x',1.1,'y',3.3);
disp(res)
When calling a function object, the dimensions (but not necessarily the sparsity patterns) of the evaluation arguments have to match those of the function inputs, with two exceptions:
* A row vector can be passed instead of a column vector and vice versa.
* A scalar argument can always be passed, regardless of the input dimension. This has the meaning of setting all elements of the input matrix to that value.
When the number of inputs to a function object is large or changing, an alternative syntax to the above is to use the *call* function which takes a Python list / MATLAB cell array or, alternatively, a Python dict / MATLAB struct. The return value will have the same type:
.. side-by-side::
.. exec-block:: python
x = MX.sym('x',2) [hidden]
y = MX.sym('y') [hidden]
f = Function('f',[x,y],[x,sin(y)*x],['x','y'],['r','q']) [hidden]
arg = [1.1,3.3]
res = f.call(arg)
print('res:', res)
arg = {'x':1.1,'y':3.3}
res = f.call(arg)
print('res:', res)
&&
.. exec-block:: octave
x = MX.sym('x',2); [hidden]
y = MX.sym('y'); [hidden]
f = Function('f',{x,y},{x,sin(y)*x},{'x','y'},{'r','q'}); [hidden]
arg = {1.1,3.3};
res = f.call(arg);
disp(res)
arg = struct('x',1.1,'y',3.3);
res = f.call(arg);
disp(res)
Converting |MX| to |SX|
-----------------------
A function object defined by an |MX| graph that only contains built-in operations (e.g. element-wise operations such as addition, square root, matrix multiplications and calls to |SX| functions), can be converted into a function defined purely by an |SX| graph using the syntax:
.. code-block:: python
sx_function = mx_function.expand()
This might speed up the calculations significantly, but might also cause extra memory overhead.
.. _sec-rootfinder:
Nonlinear root-finding problems
-------------------------------
Consider the following system of equations:
.. math::
\begin{aligned}
&g_0(z, x_1, x_2, \ldots, x_n) &&= 0 \\
&g_1(z, x_1, x_2, \ldots, x_n) &&= y_1 \\
&g_2(z, x_1, x_2, \ldots, x_n) &&= y_2 \\
&\qquad \vdots \qquad &&\qquad \\
&g_m(z, x_1, x_2, \ldots, x_n) &&= y_m,
\end{aligned}
where the first equation uniquely defines :math:`z` as a function of :math:`x_1`, \ldots, :math:`x_n` by the *implicit function theorem*
and the remaining equations define the auxiliary outputs :math:`y_1`, \ldots, :math:`y_m`.
Given a function :math:`g` for evaluating :math:`g_0`, \ldots, :math:`g_m`, we can use |casadi| to automatically formulate a function
:math:`G: \{z_{\text{guess}}, x_1, x_2, \ldots, x_n\} \rightarrow \{z, y_1, y_2, \ldots, y_m\}`.
This function includes a guess for :math:`z` to handle the case when the solution is non-unique.
The syntax for this, assuming :math:`n=m=1` for simplicity, is:
.. side-by-side::
.. exec-block:: python
nz = 1 [hidden]
nx = 1 [hidden]
z = SX.sym('x',nz)
x = SX.sym('x',nx)
g0 = sin(x+z)
g1 = cos(x-z)
g = Function('g',[z,x],[g0,g1])
G = rootfinder('G','newton',g)
print(G)
&&
.. exec-block:: octave
nz = 1; [hidden]
nx = 1; [hidden]
z = SX.sym('x',nz);
x = SX.sym('x',nx);
g0 = sin(x+z);
g1 = cos(x-z);
g = Function('g',{z,x},{g0,g1});
G = rootfinder('G','newton',g);
disp(G)
where the ``rootfinder`` function expects a display name, the name of a solver plugin
(here a simple full-step Newton method) and the residual function.
Rootfinding objects in |casadi| are differential objects and derivatives can be calculated exactly to arbitrary order.
.. seealso:: `API of rootfinder <http://casadi.org/python-api/#rootfinding>`_
.. _sec-integrator:
Initial-value problems and sensitivity analysis
-----------------------------------------------
|casadi| can be used to solve initial-value problems in ODE or DAE. The problem formulation used
is a DAE of semi-explicit form with quadratures:
.. math::
\begin{aligned}
\dot{x} &= f_{\text{ode}}(t,x,z,p,u), \qquad x(0) = x_0 \\
0 &= f_{\text{alg}}(t,x,z,p,u) \\
\dot{q} &= f_{\text{quad}}(t,x,z,p,u), \qquad q(0) = 0
\end{aligned}
For solvers of *ordinary* differential equations, the second equation and the algebraic variables :math:`z` must be absent.
An integrator in |casadi| is a function that takes the state at the initial time ``x0``, a set of parameters ``p`` and controls ``u``, and a guess for the algebraic variables (only for DAEs) ``z0`` and returns the state vector ``xf``, algebraic variables ``zf`` and the quadrature state ``qf`` at a number of output times. The control vector ``u`` is assumed to be piecewise constant and has the same grid discretization as the output grid.
The freely available `SUNDIALS suite <https://computation.llnl.gov/casc/sundials/description/description.html>`_ (distributed along with |casadi|) contains the two popular integrators CVodes and IDAS for ODEs and DAEs respectively. These integrators have support for forward and adjoint sensitivity analysis and when used via |casadi|'s Sundials interface, |casadi| will automatically formulate the Jacobian information, which is needed by the backward differentiation formula (BDF) that CVodes and IDAS use. Also automatically formulated will be the forward and adjoint sensitivity equations.
Creating integrators
^^^^^^^^^^^^^^^^^^^^
Integrators are created using |casadi|'s ``integrator`` function. Different integrators schemes and interfaces are implemented as *plugins*, essentially shared libraries that are loaded at runtime.
Consider for example the DAE:
.. math::
\begin{aligned}
\dot{x} &= z+p, \\
0 &= z \, \cos(z)-x
\end{aligned}
An integrator, using the "idas" plugin, can be created using the syntax:
.. exec-block:: python
x = SX.sym('x'); z = SX.sym('z'); p = SX.sym('p')
dae = {'x':x, 'z':z, 'p':p, 'ode':z+p, 'alg':z*cos(z)-x}
F = integrator('F', 'idas', dae)
print(F)
.. exec-block:: octave
x = SX.sym('x'); z = SX.sym('z'); p = SX.sym('p');
dae = struct('x',x,'z',z,'p',p,'ode',z+p,'alg',z*cos(z)-x);
F = integrator('F', 'idas', dae);
disp(F)
This will result in an integration from :math:`t_0=0` until :math:`t_f=1`, i.e. a single output time.
We can evaluate the function object using the initial condition :math:`x(0)=0`, parameter :math:`p=0.1`
and the guess for the algebraic variable at the initial time :math:`z(0)=0` as follows:
.. side-by-side::
.. exec-block:: python
x = SX.sym('x'); z = SX.sym('z'); p = SX.sym('p') [hidden]
dae = {'x':x, 'z':z, 'p':p, 'ode':z+p, 'alg':z*cos(z)-x} [hidden]
F = integrator('F', 'idas', dae) [hidden]
r = F(x0=0, z0=0, p=0.1)
print(r['xf'])
&&
.. exec-block:: octave
x = SX.sym('x'); z = SX.sym('z'); p = SX.sym('p'); [hidden]
dae = struct('x',x,'z',z,'p',p,'ode',z+p,'alg',z*cos(z)-x); [hidden]
F = integrator('F', 'idas', dae); [hidden]
r = F('x0',0,'z0',0,'p',0.1);
disp(r.xf)
Note that the time horizon is always fixed. It can be changed to its default values :math:`t_0=0` and :math:`t_f=1` by adding two additional argument to the constructor, after the DAE. :math:`t_f` can either be a single value or a vector of values. It may include the initial time.
Sensitivity analysis
^^^^^^^^^^^^^^^^^^^^
From a usage point of view, an integrator behaves just like the function objects created from expressions earlier in the chapter.
You can use member functions in the Function class to generate new function objects corresponding to directional derivatives (forward or reverse mode) or complete Jacobians. Then evaluate these function objects numerically to obtain sensitivity information. The documented example "sensitivity_analysis" (available in |casadi|'s example collection for Python, MATLAB and C++) demonstrate how |casadi| can be used to calculate first and second order derivative information (forward-over-forward, forward-over-adjoint, adjoint-over-adjoint) for a simple DAE.
.. _sec-nlpsol:
Nonlinear programming
---------------------
.. note:: This section assumes familiarity with much of the material that comes above.
There is also a higher-level interface in :numref:`Chapter %s <sec-opti>`. That interface can be learned stand-alone.
The NLP solvers distributed with or interfaced to |casadi| solves parametric NLPs of the following form:
.. math::
:label: nlp
\begin{array}{cc}
\begin{array}{c}
\text{minimize:} \\
x
\end{array}
&
f(x,p)
\\
\begin{array}{c}
\text{subject to:}
\end{array}
&
\begin{array}{rcl}
x_{\textrm{lb}} \le & x & \le x_{\textrm{ub}} \\
g_{\textrm{lb}} \le &g(x,p)& \le g_{\textrm{ub}}
\end{array}
\end{array}
where :math:`x \in \mathbb{R}^{nx}` is the decision variable and :math:`p \in \mathbb{R}^{np}` is a known parameter vector.
An NLP solver in |casadi| is a function that takes the parameter value (``p``), the bounds (``lbx``, ``ubx``, ``lbg``, ``ubg``) and a guess for the primal-dual solution (``x0``, ``lam_x0``, ``lam_g0``) and returns the optimal solution. Unlike integrator objects, NLP solver functions are currently not differentiable functions in |casadi|.
There are several NLP solvers interfaced with |casadi|. The most popular one is IPOPT, an open-source primal-dual interior point method which is included in |casadi| installations. Others, that require the installation of third-party software, include SNOPT, WORHP and KNITRO. Whatever the NLP solver used, the interface will automatically generate the information that it needs to solve the NLP, which may be solver and option dependent. Typically an NLP solver will need a function that gives the Jacobian of the constraint function and a Hessian of the Lagrangian function (:math:`L(x,\lambda) = f(x) + \lambda^{\text{T}} \, g(x))` with respect to :math:`x`.
Creating NLP solvers
^^^^^^^^^^^^^^^^^^^^
NLP solvers are created using |casadi|'s ``nlpsol`` function. Different solvers and interfaces are implemented as *plugins*.
Consider the following form of the so-called Rosenbrock problem:
.. math::
\begin{array}{cc}
\begin{array}{c}
\text{minimize:} \\
x,y,z
\end{array}
&
x^2 + 100 \, z^2 \\
\begin{array}{c}
\text{subject to:}
\end{array}
& z+(1-x)^2-y = 0
\end{array}
A solver for this problem, using the "ipopt" plugin, can be created using the syntax:
.. exec-block:: python
x = SX.sym('x'); y = SX.sym('y'); z = SX.sym('z')
nlp = {'x':vertcat(x,y,z), 'f':x**2+100*z**2, 'g':z+(1-x)**2-y}
S = nlpsol('S', 'ipopt', nlp)
print(S)
.. exec-block:: octave
x = SX.sym('x'); y = SX.sym('y'); z = SX.sym('z');
nlp = struct('x',[x;y;z], 'f',x^2+100*z^2, 'g',z+(1-x)^2-y);
S = nlpsol('S', 'ipopt', nlp);
disp(S)
Once the solver has been created, we can solve the NLP, using ``[2.5,3.0,0.75]`` as an initial guess, by evaluating the
function ``S``:
.. side-by-side::
.. exec-block:: python
x = SX.sym('x'); y = SX.sym('y'); z = SX.sym('z') [hidden]
nlp = {'x':vertcat(x,y,z), 'f':x**2+100*z**2, 'g':z+(1-x)**2-y} [hidden]
S = nlpsol('S', 'ipopt', nlp) [hidden]
r = S(x0=[2.5,3.0,0.75],\
lbg=0, ubg=0)
x_opt = r['x']
print('x_opt: ', x_opt)
&&
.. exec-block:: octave
x = SX.sym('x'); y = SX.sym('y'); z = SX.sym('z'); [hidden]
nlp = struct('x',[x;y;z], 'f',x^2+100*z^2, 'g',z+(1-x)^2-y); [hidden]
S = nlpsol('S', 'ipopt', nlp); [hidden]
r = S('x0',[2.5,3.0,0.75],...
'lbg',0,'ubg',0);
x_opt = r.x;
disp(x_opt)
.. _sec-qpsol:
Quadratic programming
---------------------
|casadi| provides interfaces to solve quadratic programs (QPs). Supported solvers are the open-source solvers qpOASES (distributed with |casadi|), OOQP, OSQP and PROXQP
as well as the commercial solvers CPLEX and GUROBI.
There are two different ways to solve QPs in |casadi|, using a high-level interface and a low-level interface. They are described in the following.
High-level interface
^^^^^^^^^^^^^^^^^^^^
The high-level interface for quadratic programming mirrors that of nonlinear programming, i.e. expects a problem of the form :eq:`nlp`,
with the restriction that objective function :math:`f(x,p)` must be a convex quadratic function in :math:`x` and the constraint function :math:`g(x,p)` must be linear in :math:`x`.
If the functions are not quadratic and linear, respectively, the solution is done at the current linearization point, given by the "initial guess" for :math:`x`.
If the objective function is not convex, the solver may or may not fail to find a solution or the solution may not be unique.
To illustrate the syntax, we consider the following convex QP:
.. math::
:label: simple_qp
\begin{array}{cc}
\begin{array}{c}
\text{minimize:} \\
x,y
\end{array}
&
x^2 + y^2 \\
\begin{array}{c}
\text{subject to:}
\end{array}
& x+y-10 \ge 0
\end{array}
To solve this problem with the high-level interface, we simply replace ``nlpsol`` with ``qpsol`` and use a QP solver plugin such as the with |casadi| distributed qpOASES:
.. exec-block:: python
x = SX.sym('x'); y = SX.sym('y')
qp = {'x':vertcat(x,y), 'f':x**2+y**2, 'g':x+y-10}
S = qpsol('S', 'qpoases', qp)
print(S)
.. exec-block:: octave
x = SX.sym('x'); y = SX.sym('y');
qp = struct('x',[x;y], 'f',x^2+y^2, 'g',x+y-10);
S = qpsol('S', 'qpoases', qp);
disp(S)
The created solver object ``S`` will have the same input and output signature as the solver objects
created with ``nlpsol``. Since the solution is unique, it is less important to provide an initial guess:
.. side-by-side::
.. exec-block:: python
x = SX.sym('x'); y = SX.sym('y') [hidden]
qp = {'x':vertcat(x,y), 'f':x**2+y**2, 'g':x+y-10} [hidden]
S = qpsol('S', 'qpoases', qp) [hidden]
r = S(lbg=0)
x_opt = r['x']
print('x_opt: ', x_opt)
&&
.. exec-block:: octave
x = SX.sym('x'); y = SX.sym('y'); [hidden]
qp = struct('x',[x;y], 'f',x^2+y^2, 'g',x+y-10); [hidden]
S = qpsol('S', 'qpoases', qp); [hidden]
r = S('lbg',0);
x_opt = r.x;
disp(x_opt)
Low-level interface
^^^^^^^^^^^^^^^^^^^
The low-level interface, on the other hand, solves QPs of the following form:
.. math::
:label: qp
\begin{array}{cc}
\begin{array}{c}
\text{minimize:} \\
x
\end{array}
&
\frac{1}{2} x^T \, H \, x + g^T \, x
\\
\begin{array}{c}
\text{subject to:}
\end{array}
&
\begin{array}{rcl}
x_{\textrm{lb}} \le & x & \le x_{\textrm{ub}} \\
a_{\textrm{lb}} \le & A \, x& \le a_{\textrm{ub}}
\end{array}
\end{array}
Encoding problem :eq:`simple_qp` in this form, omitting bounds that are infinite, is straightforward:
.. side-by-side::
.. code-block:: python
H = 2*DM.eye(2)
A = DM.ones(1,2)
g = DM.zeros(2)
lba = 10.
.. code-block:: octave
H = 2*DM.eye(2);
A = DM.ones(1,2);
g = DM.zeros(2);
lba = 10;
To create a solver instance, instead of passing symbolic expressions for the QP, we now pass the sparsity patterns of the matrices :math:`H` and :math:`A`.
Since we used |casadi|'s |DM|-type above, we can simply query the sparsity patterns:
.. side-by-side::
.. exec-block:: python
H = 2*DM.eye(2) [hidden]
A = DM.ones(1,2) [hidden]
g = DM.zeros(2) [hidden]
lba = 10. [hidden]
qp = {}
qp['h'] = H.sparsity()
qp['a'] = A.sparsity()
S = conic('S','qpoases',qp)
print(S)
.. exec-block:: octave
H = 2*DM.eye(2); [hidden]
A = DM.ones(1,2); [hidden]
g = DM.zeros(2); [hidden]
lba = 10; [hidden]
qp = struct;
qp.h = H.sparsity();
qp.a = A.sparsity();
S = conic('S','qpoases',qp);
disp(S)
The returned ``Function`` instance will have a *different* input/output signature compared to the high-level interface, one that includes the matrices :math:`H` and :math:`A`:
.. side-by-side::
.. exec-block:: python
H = 2*DM.eye(2) [hidden]
A = DM.ones(1,2) [hidden]
g = DM.zeros(2) [hidden]
lba = 10. [hidden]
qp = {} [hidden]
qp['h'] = H.sparsity() [hidden]
qp['a'] = A.sparsity() [hidden]
S = conic('S','qpoases',qp) [hidden]
r = S(h=H, g=g, \
a=A, lba=lba)
x_opt = r['x']
print('x_opt: ', x_opt)
&&
.. exec-block:: octave
H = 2*DM.eye(2); [hidden]
A = DM.ones(1,2); [hidden]
g = DM.zeros(2); [hidden]
lba = 10; [hidden]
qp = struct; [hidden]
qp.h = H.sparsity(); [hidden]
qp.a = A.sparsity(); [hidden]
S = conic('S','qpoases',qp); [hidden]
r = S('h', H, 'g', g,...
'a', A, 'lba', lba);
x_opt = r.x;
disp(x_opt)
For-loop equivalents
--------------------
When modeling using expression graphs in |casadi|, it is a common pattern to use of for-loop constructs of the host language (C++/Python/Matlab).
The graph size will grow linearly with the loop size :math:`n`, and so will the construction time of the expression graph and the initialization time of functions using that expression.
We offer some special constructs that improve on this complexity.
Map
^^^
Suppose you are interested in computing a function :math:`f : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}` repeatedly on all columns of a matrix :math:`X \in \mathbb{R}^{n \times N}`, and aggregating all results in a result matrix :math:`Y \in \mathbb{R}^{m \times N}`:
.. side-by-side::
.. exec-block:: python
x = SX.sym("x") [hidden]
f = Function("f",[x],[sin(x)]) [hidden]
N = 4
X = MX.sym("X",1,N)
print(f)
ys = []
for i in range(N):
ys.append(f(X[:,i]))
Y = hcat(ys)
F = Function('F',[X],[Y])
print(F)
&&
.. exec-block:: octave
x = SX.sym('x'); [hidden]
f = Function('f',{x},{sin(x)}); [hidden]
N = 4;
X = MX.sym('X',1,N);
disp(f)
ys = {};
for i=1:N
ys{end+1} = f(X(:,i));
end
Y = [ys{:}];
F = Function('F',{X},{Y});
disp(F)
The aggregate function :math:`F : \mathbb{R}^{n \times N} \rightarrow \mathbb{R}^{m \times N}` can be obtained with the ``map`` construct:
.. side-by-side::
.. exec-block:: python
x = SX.sym("x") [hidden]
f = Function("f",[x],[sin(x)]) [hidden]
N = 4 [hidden]
F = f.map(N)
print(F)
&&
.. exec-block:: octave
x = SX.sym('x'); [hidden]
f = Function('f',{x},{sin(x)}); [hidden]
N = 4; [hidden]
F = f.map(N);
disp(F)
|casadi| can be instructed to parallelize when :math:`F` gets evaluated. In the following example, we dedicate 2 threads for the ``map`` task.
.. side-by-side::
.. exec-block:: python
x = SX.sym("x") [hidden]
f = Function("f",[x],[sin(x)]) [hidden]
N = 4 [hidden]
F = f.map(N,"thread",2)
print(F)
&&
.. exec-block:: octave
x = SX.sym('x'); [hidden]
f = Function('f',{x},{sin(x)}); [hidden]
N = 4; [hidden]
F = f.map(N,'thread',2);
disp(F)
The ``map`` operation supports primitive functions :math:`f` with multiple inputs/outputs which can also be matrices. Aggregation will always happen horizontally.
The ``map`` operation exhibits constant graph size and initialization time.
Fold
^^^^
In case each for-loop iteration depends on the result from the previous iteration, the ``fold`` construct applies. In the following, the ``x`` variable acts as an accumulater that is initialized by :math:`x_0 \in \mathbb{R}^{n}`:
.. side-by-side::
.. exec-block:: python
x = SX.sym("x") [hidden]
f = Function("f",[x],[sin(x)]) [hidden]
x0 = MX.sym("x0") [hidden]
N = 4 [hidden]
x = x0
for i in range(N):
x = f(x)
F = Function('F',[x0],[x])
print(F)
&&
.. exec-block:: octave
x = SX.sym('x'); [hidden]
f = Function('f',{x},{sin(x)}); [hidden]
x0 = MX.sym('x0'); [hidden]
N = 4; [hidden]
x = x0;
for i=1:N
x = f(x);
end
F = Function('F',{x0},{x});
disp(F)
For a given function :math:`f : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}`, the result function :math:`F : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}` can be obtained with the ``fold`` construct:
.. side-by-side::
.. exec-block:: python
x = SX.sym("x") [hidden]
f = Function("f",[x],[sin(x)]) [hidden]
N = 4 [hidden]
F = f.fold(N)
print(F)
&&
.. exec-block:: octave
x = SX.sym('x'); [hidden]
f = Function('f',{x},{sin(x)}); [hidden]
N = 4; [hidden]
F = f.fold(N);
disp(F)
In case intermediate accumulator values are desired as output (:math:`\mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times N}`), use ``mapaccum`` instead of ``fold``.
The ``fold``/``mapaccum`` operation supports primitive functions :math:`f` with multiple inputs/outputs which can also be matrices.
The first input and output are used for accumulating, while the remainder inputs are read column-wise over the iterations.
The ``map``/``mapaccum`` operation exhibits a graph size and initialization time that scales logarithmically with :math:`n`.
Conditional evaluation
^^^^^^^^^^^^^^^^^^^^^^
It is possible to include conditional evaluation of expressions in CasADi expression graphs by constucting ``conditional`` function instances. This function takes a number of existing ``Function`` instances, :math:`f_1`, :math:`f_2`, :math:`f_n` as well as a "default" function :math:`f_{def}`. All these functions must have the same input and output signatures, i.e. the same number of inputs and outputs with the same dimensions:
.. side-by-side::
.. exec-block:: python
x = SX.sym("x")
f0 = Function("f0",[x],[sin(x)])
f1 = Function("f1",[x],[cos(x)])
f2 = Function("f2",[x],[tan(x)])
f_cond = Function.conditional('f_cond', [f0, f1], f2)
print(f_cond)
.. exec-block:: octave
x = SX.sym('x');
f0 = Function('f0',{x},{sin(x)});
f1 = Function('f1',{x},{cos(x)});
f2 = Function('f2',{x},{tan(x)});
f_cond = Function.conditional('f_cond', {f0, f1}, f2);
disp(f_cond);
The result is a new function instance with the same input/output signature, but with one additional input corresponding to an index. Its evaluation corresponds to:
.. math::
f_{\text{cond}}(c, x_1, x_2, \ldots, x_m) = \left\{
\begin{array}{ll}
f_0(x_1, x_2, \ldots, x_m) & \text{if $c = 0$,} \\
f_1(x_1, x_2, \ldots, x_m) & \text{if $c = 1$,} \\
f_2(x_1, x_2, \ldots, x_m) & \text{otherwise}
\end{array}
\right.
A function above can be missing (i.e. be a null pointer ``Function()``), in which case all outputs will be evaluated to NaN. Note that the evaluation is "short-circuiting", i.e. only the relevant function is evaluated. This also applies to any derivative calculation.
A common special case is when there is only a single case in addition to the default case. This is equivalent to an if-then-else statement, which can be written with the shorthand:
.. side-by-side::
.. exec-block:: python
x = SX.sym("x")
f_true = Function("f_true",[x],[cos(x)])
f_false = Function("f_false",[x],[sin(x)])
f_cond = Function.if_else('f_cond', f_true, f_false)
print(f_cond)
.. exec-block:: octave
x = SX.sym('x');
f_true = Function('f_true',{x},{cos(x)});
f_false = Function('f_false',{x},{sin(x)});
f_cond = Function.if_else('f_cond', f_true, f_false);
disp(f_cond);
Note that conditional expressions such as these can result in non-smooth expressions that may not converge if used if used in a gradient-based optimization algorithm.
.. rubric:: Footnotes
.. [#f1] for problems with free end time, you can always scale time by introducing an extra parameter and substitute :math:`t` for a dimensionless time variable that goes from 0 to 1
|