1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
|
{
Copyright 2007-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
unit TestCastleBoxes;
interface
uses
Classes, SysUtils, fpcunit, testutils, testregistry, CastleBaseTestCase;
type
TTestCastleBoxes = class(TCastleBaseTestCase)
published
procedure TestIsCenteredBox3DPlaneCollision;
procedure TestBox3DPlaneCollision;
procedure TestIsBox3DTriangleCollision;
procedure TestIsBox3DTriangleCollisionEpsilons;
procedure TestBox3DTransform;
procedure TestBox3DMaximumPlane;
procedure TestBox3DMinimumPlane;
procedure TestBox3DPointDistance;
procedure Test2D;
end;
implementation
uses CastleVectors, CastleUtils, CastleBoxes, CastleStringUtils, CastleTimeUtils,
TestCastleVectors, CastleTriangles;
procedure TTestCastleBoxes.TestIsCenteredBox3DPlaneCollision;
begin
{ box 10, 1, 1 with a plane that crosses 0,0,0 point always collides }
AssertTrue(IsCenteredBox3DPlaneCollision(
Vector3Single(10, 1, 1), Vector4Single(0, 0, 1, 0)));
AssertTrue(IsCenteredBox3DPlaneCollision(
Vector3Single(10, 1, 1), Vector4Single(0, 1, 0, 0)));
AssertTrue(IsCenteredBox3DPlaneCollision(
Vector3Single(10, 1, 1), Vector4Single(1, 0, 0, 0)));
AssertTrue(IsCenteredBox3DPlaneCollision(
Vector3Single(10, 1, 1), Vector4Single(123, 456, 789, 0)));
AssertTrue(not IsCenteredBox3DPlaneCollision(
Vector3Single(10, 1, 1), Vector4Single(0, 0, -1, 5)));
AssertTrue(not IsCenteredBox3DPlaneCollision(
Vector3Single(10, 1, 1), Vector4Single(0, -1, 0, 5)));
AssertTrue(IsCenteredBox3DPlaneCollision(
Vector3Single(10, 1, 1), Vector4Single(-1, 0, 0, 5)));
end;
procedure TTestCastleBoxes.TestBox3DPlaneCollision;
procedure AssertBox3DPlaneCollision(const Box: TBox3D;
const Plane: TVector4Single; CollisionResult: TPlaneCollision);
begin
AssertTrue(Box.PlaneCollision(Plane) = CollisionResult);
{ Check by the way Box3DPlaneCollisionInside, Box3DPlaneCollisionOutside }
AssertTrue(Box.PlaneCollisionInside(Plane) = (CollisionResult = pcInside));
AssertTrue(Box.PlaneCollisionOutside(Plane) = (CollisionResult = pcOutside));
end;
var
Box: TBox3D;
Plane: TVector4Single;
begin
Box.Data[0] := Vector3Single(-10, -1, -1);
Box.Data[1] := Vector3Single( 10, 1, 1);
{ box 10, 1, 1 with a plane that crosses 0,0,0 point always collides }
AssertBox3DPlaneCollision(
Box, Vector4Single(0, 0, 1, 0), pcIntersecting);
AssertBox3DPlaneCollision(
Box, Vector4Single(0, 1, 0, 0), pcIntersecting);
AssertBox3DPlaneCollision(
Box, Vector4Single(1, 0, 0, 0), pcIntersecting);
AssertBox3DPlaneCollision(
Box, Vector4Single(123, 456, 789, 0), pcIntersecting);
{ test inside/outside difference }
AssertBox3DPlaneCollision(
Box3D(Vector3Single(-1, -1, 10),
Vector3Single( 1, 1, 20)),
Vector4Single(0, 0, 1, 0), pcOutside);
AssertBox3DPlaneCollision(
Box3D(Vector3Single(-1, -1, -20),
Vector3Single( 1, 1, -10)),
Vector4Single(0, 0, 1, 0), pcInside);
{ basic test for pcNone }
AssertBox3DPlaneCollision(EmptyBox3D,
Vector4Single(0, 0, 1, 0), pcNone);
AssertBox3DPlaneCollision(
Box, Vector4Single(0, 0, -1, 5), pcOutside);
AssertBox3DPlaneCollision(
Box, Vector4Single(0, -1, 0, 5), pcOutside);
AssertBox3DPlaneCollision(
Box, Vector4Single(-1, 0, 0, 5), pcIntersecting);
Box := Box.Translate(Vector3Single(0, 1000, 0));
AssertBox3DPlaneCollision(
Box, Vector4Single(0, 0, 1, 0), pcIntersecting);
AssertBox3DPlaneCollision(
Box, Vector4Single(0, 1, 0, 0), pcOutside);
AssertBox3DPlaneCollision(
Box, Vector4Single(1, 0, 0, 0), pcIntersecting);
Plane[0] := 0;
Plane[1] := 0;
Plane[2] := 1;
Plane[3] := 1.980401039E+00;
Box.Data[0][0] := 2.837333679E-01;
Box.Data[0][1] := -9.844776917E+01;
Box.Data[0][2] := -1.980401039E+00;
Box.Data[1][0] := 1.283623352E+02;
Box.Data[1][1] := 3.240192413E+00;
Box.Data[1][2] := 3.100979996E+01;
AssertBox3DPlaneCollision(Box, Plane, pcIntersecting);
end;
procedure TTestCastleBoxes.TestIsBox3DTriangleCollision;
procedure RandomTrianglesTest(
const XRandomness, YRandomness, ZRandomness: Integer);
var
Triangle: TTriangle3Single;
Box: TBox3D;
V0, V1, V2: TVector3Single;
I: Integer;
begin
{ random triangle completely within the box }
Box.Data[0] := Vector3Single(10, 10, 10);
Box.Data[1] := Vector3Single(20, 20, 20);
for I := 1 to 50 do
begin
repeat
Triangle[0] := Vector3Single(12 + Random(8) * XRandomness, 12 + Random(8) * YRandomness, 12 + Random(8) * ZRandomness);
Triangle[1] := Vector3Single(12 + Random(8) * XRandomness, 12 + Random(8) * YRandomness, 12 + Random(8) * ZRandomness);
Triangle[2] := Vector3Single(12 + Random(8) * XRandomness, 12 + Random(8) * YRandomness, 12 + Random(8) * ZRandomness);
until IsValidTriangle(Triangle);
AssertTrue(Box.IsTriangleCollision(Triangle));
end;
{ random triangle completely outside the box (but chosen to collide) }
Box.Data[0] := Vector3Single(10, 10, 10);
Box.Data[1] := Vector3Single(20, 20, 20);
for I := 1 to 50 do
begin
repeat
V0 := Vector3Single(10 + Random(10) * XRandomness, 10 + Random(10) * YRandomness, 10 + Random(10) * ZRandomness);
V1 := Vector3Single(10 + Random(10) * XRandomness, 10 + Random(10) * YRandomness, 10 + Random(10) * ZRandomness);
V2 := VectorNegate(VectorAdd(V0, V1));
Triangle[0] := VectorAdd(Vector3Single(15, 15, 15), V0);
Triangle[1] := VectorAdd(Vector3Single(15, 15, 15), V1);
Triangle[2] := VectorAdd(Vector3Single(15, 15, 15), V2);
until IsValidTriangle(Triangle);
AssertTrue(Box.IsTriangleCollision(Triangle));
VectorAddTo1st(Triangle[0], Vector3Single(100, 100, 100));
VectorAddTo1st(Triangle[1], Vector3Single(100, 100, 100));
VectorAddTo1st(Triangle[2], Vector3Single(100, 100, 100));
AssertTrue(not Box.IsTriangleCollision(Triangle));
end;
{ random triangle with 1 point inside the box, other 2 outside }
Box.Data[0] := Vector3Single(10, 10, 10);
Box.Data[1] := Vector3Single(20, 20, 20);
for I := 1 to 50 do
begin
repeat
V0 := Vector3Single(10 + Random(10) * XRandomness, 10 + Random(10) * YRandomness, 10 + Random(10) * ZRandomness);
V1 := Vector3Single(10 + Random(10) * XRandomness, 10 + Random(10) * YRandomness, 10 + Random(10) * ZRandomness);
Triangle[0] := VectorAdd(Vector3Single(15, 15, 15), V0);
Triangle[1] := VectorAdd(Vector3Single(15, 15, 15), V1);
Triangle[2] := Vector3Single(15, 15, 15);
until IsValidTriangle(Triangle);
AssertTrue(Box.IsTriangleCollision(Triangle));
VectorAddTo1st(Triangle[0], Vector3Single(100, 100, 100));
VectorAddTo1st(Triangle[1], Vector3Single(100, 100, 100));
VectorAddTo1st(Triangle[2], Vector3Single(100, 100, 100));
AssertTrue(not Box.IsTriangleCollision(Triangle));
end;
end;
var
Triangle: TTriangle3Single;
Box: TBox3D;
begin
Triangle[0] := Vector3Single(0, 0, 0);
Triangle[1] := Vector3Single(10, 0, 0);
Triangle[2] := Vector3Single(10, 10, 0);
Box.Data[0] := Vector3Single(-10, -1, -1);
Box.Data[1] := Vector3Single( 10, 1, 1);
AssertTrue(Box.IsTriangleCollision(Triangle));
Box := Box.Translate(Vector3Single(0, 0, 0.5));
AssertTrue(Box.IsTriangleCollision(Triangle));
Box := Box.Translate(Vector3Single(0, 0, 1.0));
AssertTrue(not Box.IsTriangleCollision(Triangle));
RandomTrianglesTest(1, 1, 1);
{ make one coord locked, and perform the same tests as above }
RandomTrianglesTest(0, 1, 1);
RandomTrianglesTest(1, 0, 1);
RandomTrianglesTest(1, 1, 0);
end;
procedure TTestCastleBoxes.TestIsBox3DTriangleCollisionEpsilons;
var
EqualityEpsilon: Single;
{ Modified version of IsCenteredBox3DPlaneCollision and IsBox3DTriangleCollision
that use EqualityEpsilon variable here. Also, use Single precision calculations. }
function IsCenteredBox3DPlaneCollision(
const BoxHalfSize: TVector3Single;
const Plane: TVector4Single): boolean;
{ Implementation of this is based on
[http://jgt.akpeters.com/papers/AkenineMoller01/tribox.html]
planeBoxOverlap routine, by Tomas Akenine-Mller,
mentioned in his paper [http://jgt.akpeters.com/papers/AkenineMoller01/]
about "Fast 3D Triangle-Box Overlap Testing", downloadable from
[http://www.cs.lth.se/home/Tomas_Akenine_Moller/pubs/tribox.pdf].
The idea: we need to test plane equation with only two points
(instead of eight points, as in naive version). Think about the plane
normal vector; imagine 8 box points projected on this vector; now
we can find 2 box points, one that has minimal value when projected
on normal vector, and one that has maximum value. Now you need to test
is the plane between these two points. }
var
I: Integer;
VMin, VMax: TVector3Single;
begin
for I := 0 to 2 do
if Plane[I] > 0 then
begin
VMin[I] := -BoxHalfSize[I];
VMax[I] := BoxHalfSize[I];
end else
begin
VMin[I] := BoxHalfSize[I];
VMax[I] := -BoxHalfSize[I];
end;
{ If VMin is above the plane (plane equation is > 0), then VMax
is also above, no need to test anything else. }
if Plane[0] * VMin[0] +
Plane[1] * VMin[1] +
Plane[2] * VMin[2] +
Plane[3] > EqualityEpsilon then
Exit(false);
{ So VMin is <= plane. So if VMax is >= 0, then there's a collision. }
Result := Plane[0] * VMax[0] +
Plane[1] * VMax[1] +
Plane[2] * VMax[2] +
Plane[3] >= EqualityEpsilon;
end;
function IsBox3DTriangleCollision(
const Box: TBox3D;
const Triangle: TTriangle3Single): boolean;
{ Implementation of this is based on
[http://jgt.akpeters.com/papers/AkenineMoller01/tribox.html],
by Tomas Akenine-Mller, described
in his paper [http://jgt.akpeters.com/papers/AkenineMoller01/]
"Fast 3D Triangle-Box Overlap Testing", downloadable from
[http://www.cs.lth.se/home/Tomas_Akenine_Moller/pubs/tribox.pdf].
Use separating axis theorem to test overlap between triangle and box
need to test for overlap in these directions:
1) the (x,y,z)-directions
2) normal of the triangle
3) crossproduct(edge from tri, (x,y,z)-direction)
this gives 3x3=9 more tests
}
var
TriangleMoved: TTriangle3Single;
BoxHalfSize: TVector3Single;
{ ======================== X-tests ======================== }
function AXISTEST_X01(const a, b, fa, fb: Single): boolean;
var
p0, p2, rad, min, max: Single;
begin
p0 := a * TriangleMoved[0][1] - b * TriangleMoved[0][2];
p2 := a * TriangleMoved[2][1] - b * TriangleMoved[2][2];
if p0<p2 then begin min := p0; max := p2; end else
begin min := p2; max := p0; end;
rad := fa * BoxHalfSize[1] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
function AXISTEST_X2(const a, b, fa, fb: Single): boolean;
var
p0, p1, rad, min, max: Single;
begin
p0 := a * TriangleMoved[0][1] - b * TriangleMoved[0][2];
p1 := a * TriangleMoved[1][1] - b * TriangleMoved[1][2];
if p0<p1 then begin min := p0; max := p1; end else
begin min := p1; max := p0; end;
rad := fa * BoxHalfSize[1] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
{ ======================== Y-tests ======================== }
function AXISTEST_Y02(const a, b, fa, fb: Single): boolean;
var
p0, p2, rad, min, max: Single;
begin
p0 := -a * TriangleMoved[0][0] + b * TriangleMoved[0][2];
p2 := -a * TriangleMoved[2][0] + b * TriangleMoved[2][2];
if p0<p2 then begin min := p0; max := p2; end else
begin min := p2; max := p0; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
function AXISTEST_Y1(const a, b, fa, fb: Single): boolean;
var
p0, p1, rad, min, max: Single;
begin
p0 := -a * TriangleMoved[0][0] + b * TriangleMoved[0][2];
p1 := -a * TriangleMoved[1][0] + b * TriangleMoved[1][2];
if p0<p1 then begin min := p0; max := p1; end else
begin min := p1; max := p0; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[2];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
{ ======================== Z-tests ======================== }
function AXISTEST_Z12(const a, b, fa, fb: Single): boolean;
var
p1, p2, rad, min, max: Single;
begin
p1 := a * TriangleMoved[1][0] - b * TriangleMoved[1][1];
p2 := a * TriangleMoved[2][0] - b * TriangleMoved[2][1];
if p2<p1 then begin min := p2; max := p1; end else
begin min := p1; max := p2; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[1];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
function AXISTEST_Z0(const a, b, fa, fb: Single): boolean;
var
p0, p1, rad, min, max: Single;
begin
p0 := a * TriangleMoved[0][0] - b * TriangleMoved[0][1];
p1 := a * TriangleMoved[1][0] - b * TriangleMoved[1][1];
if p0<p1 then begin min := p0; max := p1; end else
begin min := p1; max := p0; end;
rad := fa * BoxHalfSize[0] + fb * BoxHalfSize[1];
Result := (min > rad + EqualityEpsilon) or (max < -rad - EqualityEpsilon);
end;
procedure FindMinMax(const x0, x1, x2: Single; out min, max: Single);
begin
min := x0;
max := x0;
if x1 < min then min := x1 else
if x1 > max then max := x1;
if x2 < min then min := x2 else
if x2 > max then max := x2;
end;
var
BoxCenter: TVector3Single;
I: Integer;
TriangleEdges: array [0..2] of TVector3Single;
EdgeAbs: TVector3Single;
min, max: Single;
Plane: TVector4Single;
PlaneDir: TVector3Single absolute Plane;
begin
if Box.IsEmpty then
Exit(false);
{ calculate BoxCenter and BoxHalfSize }
for I := 0 to 2 do
begin
BoxCenter[I] := (Box.Data[0, I] + Box.Data[1, I]) / 2;
BoxHalfSize[I] := (Box.Data[1, I] - Box.Data[0, I]) / 2;
end;
{ calculate TriangleMoved (Triangle shifted by -BoxCenter,
so that we can treat the BoxHalfSize as centered around origin) }
TriangleMoved[0] := VectorSubtract(Triangle[0], BoxCenter);
TriangleMoved[1] := VectorSubtract(Triangle[1], BoxCenter);
TriangleMoved[2] := VectorSubtract(Triangle[2], BoxCenter);
{ calculate TriangleMoved edges }
TriangleEdges[0] := VectorSubtract(TriangleMoved[1], TriangleMoved[0]);
TriangleEdges[1] := VectorSubtract(TriangleMoved[2], TriangleMoved[1]);
TriangleEdges[2] := VectorSubtract(TriangleMoved[0], TriangleMoved[2]);
{ tests 3) }
EdgeAbs[0] := Abs(TriangleEdges[0][0]);
EdgeAbs[1] := Abs(TriangleEdges[0][1]);
EdgeAbs[2] := Abs(TriangleEdges[0][2]);
if AXISTEST_X01(TriangleEdges[0][2], TriangleEdges[0][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
if AXISTEST_Y02(TriangleEdges[0][2], TriangleEdges[0][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
if AXISTEST_Z12(TriangleEdges[0][1], TriangleEdges[0][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);
EdgeAbs[0] := Abs(TriangleEdges[1][0]);
EdgeAbs[1] := Abs(TriangleEdges[1][1]);
EdgeAbs[2] := Abs(TriangleEdges[1][2]);
if AXISTEST_X01(TriangleEdges[1][2], TriangleEdges[1][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
if AXISTEST_Y02(TriangleEdges[1][2], TriangleEdges[1][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
if AXISTEST_Z0 (TriangleEdges[1][1], TriangleEdges[1][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);
EdgeAbs[0] := Abs(TriangleEdges[2][0]);
EdgeAbs[1] := Abs(TriangleEdges[2][1]);
EdgeAbs[2] := Abs(TriangleEdges[2][2]);
if AXISTEST_X2 (TriangleEdges[2][2], TriangleEdges[2][1], EdgeAbs[2], EdgeAbs[1]) then Exit(false);
if AXISTEST_Y1 (TriangleEdges[2][2], TriangleEdges[2][0], EdgeAbs[2], EdgeAbs[0]) then Exit(false);
if AXISTEST_Z12(TriangleEdges[2][1], TriangleEdges[2][0], EdgeAbs[1], EdgeAbs[0]) then Exit(false);
{ tests 1)
first test overlap in the (x,y,z)-directions
find min, max of the triangle each direction, and test for overlap in
that direction -- this is equivalent to testing a minimal AABB around
the triangle against the AABB }
{ test in X-direction }
FindMinMax(TriangleMoved[0][0], TriangleMoved[1][0], TriangleMoved[2][0], min, max);
if (min > boxhalfsize[0] + EqualityEpsilon) or
(max < -boxhalfsize[0] - EqualityEpsilon) then Exit(false);
{ test in Y-direction }
FindMinMax(TriangleMoved[0][1], TriangleMoved[1][1], TriangleMoved[2][1], min, max);
if (min > boxhalfsize[1] + EqualityEpsilon) or
(max < -boxhalfsize[1] - EqualityEpsilon) then Exit(false);
{ test in Z-direction }
FindMinMax(TriangleMoved[0][2], TriangleMoved[1][2], TriangleMoved[2][2], min, max);
if (min > boxhalfsize[2] + EqualityEpsilon) or
(max < -boxhalfsize[2] - EqualityEpsilon) then Exit(false);
{ tests 2)
test if the box intersects the plane of the triangle
compute plane equation of triangle: normal*x+d=0 }
PlaneDir := VectorProduct(TriangleEdges[0], TriangleEdges[1]);
Plane[3] := -VectorDotProduct(PlaneDir, TriangleMoved[0]);
if not IsCenteredBox3DPlaneCollision(BoxHalfSize, Plane) then
Exit(false);
Result := true; { box and triangle overlaps }
end;
var
Triangle: TTriangle3Single;
Box: TBox3D;
procedure DoTest(const TestName: string; CorrectResult: boolean);
begin
{ These writelns were used to experimentally check that 1e-4 is still too small,
and 1e-3 is enough for these tests... That's assuming that we have
IsBox3DTriangleCollision implementation based on Single type. }
{Write(TestName, ': ');
EqualityEpsilon := 1e-3;
Write(Box.IsTriangleCollision(Triangle), ' ');
EqualityEpsilon := 1e-6;
Write(Box.IsTriangleCollision(Triangle), ' ');
Write(CorrectResult, ' ');
Write(Box.IsTriangleCollision(Triangle), ' ');
Writeln;}
AssertTrue(Box.IsTriangleCollision(Triangle) = CorrectResult);
end;
const
A = 1.980401039123535;
var
OldBox3DPlaneCollisionEqualityEpsilon: Double;
begin
EqualityEpsilon := 1e-5;
Box.Data[0][0] := -7.721179485321045;
Box.Data[0][1] := -3.115305423736572;
Box.Data[0][2] := 26.886024475097656;
Box.Data[1][0] := 0.283733367919922;
Box.Data[1][1] := 3.240192413330078;
Box.Data[1][2] := 28.947912216186523;
Triangle[0][0] := -7.759810924530029;
Triangle[0][1] := 6.43093835606123E-006;
Triangle[0][2] := 28.172618865966797;
Triangle[1][0] := -7.610710620880127;
Triangle[1][1] := -1.513858914375305;
Triangle[1][2] := 31.17262077331543;
Triangle[2][0] := -7.759810924530029;
Triangle[2][1] := 6.43093835606123E-006;
Triangle[2][2] := 31.17262077331543;
(* DoTest('1', false
{ Not sure what the result should be... ? But it sure depends on the epsilon used in
IsBox3DTriangleCollision. Test on Double values shows that this should be false.
}); *)
Box.Data[0][0] := 0.283733367919922;
Box.Data[0][1] := -98.447769165039062;
Box.Data[0][2] := -A;
Box.Data[1][0] := 128.36233520507812;
Box.Data[1][1] := 3.240192413330078;
Box.Data[1][2] := 31.009799957275391;
Triangle[0][0] := 25.288267135620117;
Triangle[0][1] := 8.671939849853516;
Triangle[0][2] := -A;
Triangle[1][0] := 16.125827789306641;
Triangle[1][1] := -21.297039031982422;
Triangle[1][2] := -A;
Triangle[2][0] := 19.586576461791992;
Triangle[2][1] := -26.554182052612305;
Triangle[2][2] := -A;
{ Looks like for this test, even larger Box3DPlaneCollisionEqualityEpsilon
is needed.
At least under x86_64 (tested on Linux with fpc 2.2.4 and trunk on 2009-08-21,
tested again with FPC 3.1.1 from 2015-11).
And probably on armel / armhf too. }
OldBox3DPlaneCollisionEqualityEpsilon := Box3DPlaneCollisionEqualityEpsilon;
Box3DPlaneCollisionEqualityEpsilon := 1e-3;
DoTest('2', true);
Box3DPlaneCollisionEqualityEpsilon := OldBox3DPlaneCollisionEqualityEpsilon;
Box.Data[0][0] := 0.283733367919922;
Box.Data[0][1] := -47.603790283203125;
Box.Data[0][2] := -A;
Box.Data[1][0] := 64.323036193847656;
Box.Data[1][1] := 3.240192413330078;
Box.Data[1][2] := 14.514699935913086;
{ Triangle as before }
DoTest('3', true);
Box.Data[0][0] := 0.283733367919922;
Box.Data[0][1] := -47.603790283203125;
Box.Data[0][2] := -A;
Box.Data[1][0] := 32.303382873535156;
Box.Data[1][1] := -22.181798934936523;
Box.Data[1][2] := 6.267149448394775;
{ Triangle as before }
DoTest('4', true);
Box.Data[0][0] := 16.293558120727539;
Box.Data[0][1] := 3.240192413330078;
Box.Data[0][2] := -A;
Box.Data[1][0] := 24.298469543457031;
Box.Data[1][1] := 9.59568977355957;
Box.Data[1][2] := 0.081486582756042;
Triangle[0][0] := 25.288267135620117;
Triangle[0][1] := 8.671939849853516;
Triangle[0][2] := -A;
Triangle[1][0] := -0.731123030185699;
Triangle[1][1] := 32.452774047851562;
Triangle[1][2] := -A;
Triangle[2][0] := -0.382562607526779;
Triangle[2][1] := 26.646867752075195;
Triangle[2][2] := -A;
DoTest('5', true);
Box.Data[0][0] := -17.727319717407227;
Box.Data[0][1] := 4.829066753387451;
Box.Data[0][2] := 5.751677513122559;
Box.Data[1][0] := -15.726092338562012;
Box.Data[1][1] := 6.417941093444824;
Box.Data[1][2] := 6.267149448394775;
Triangle[0][0] := -6.18981409072876;
Triangle[0][1] := 2.234785079956055;
Triangle[0][2] := 29.618535995483398;
Triangle[1][0] := -20.651203155517578;
Triangle[1][1] := 5.486495018005371;
Triangle[1][2] := -0.132393002510071;
Triangle[2][0] := -6.149000644683838;
Triangle[2][1] := 2.083860397338867;
Triangle[2][2] := 29.618535995483398;
(* DoTest('6', false
{ Not sure what the result should be... ? But it sure depends on the epsilon used in
IsBox3DTriangleCollision. Test on Double values shows that this should be false.
}); *)
end;
procedure TTestCastleBoxes.TestBox3DTransform;
{ Test Box3DTransform for correctness and speed.
Compare with Slower implementation, that should be slower
(on non-projection matrices) but give the same results. }
function Slower(const Box: TBox3D; const Matrix: TMatrix4Single): TBox3D;
var
BoxPoints: array [0..7] of TVector3Single;
i: integer;
begin
if Box.IsEmpty then
Exit(EmptyBox3D);
Box.GetAllPoints(@boxpoints);
for i := 0 to 7 do boxpoints[i] := MatrixMultPoint(Matrix, boxpoints[i]);
{ Non-optimized version:
Result := CalculateBoundingBox(@boxpoints, 8, 0);
But it turns out that the code below, that does essentially the same
thing as CalculateBoundingBox implementation, works noticeably faster.
This is noticeable on "The Castle" with many creatures: then a considerable
time is spend inside TCreature.BoundingBox, that must calculate
transformed bounding boxes.
}
Result.Data[0] := BoxPoints[0];
Result.Data[1] := BoxPoints[0];
for I := 1 to High(BoxPoints) do
begin
if BoxPoints[I, 0] < Result.Data[0, 0] then Result.Data[0, 0] := BoxPoints[I, 0];
if BoxPoints[I, 1] < Result.Data[0, 1] then Result.Data[0, 1] := BoxPoints[I, 1];
if BoxPoints[I, 2] < Result.Data[0, 2] then Result.Data[0, 2] := BoxPoints[I, 2];
if BoxPoints[I, 0] > Result.Data[1, 0] then Result.Data[1, 0] := BoxPoints[I, 0];
if BoxPoints[I, 1] > Result.Data[1, 1] then Result.Data[1, 1] := BoxPoints[I, 1];
if BoxPoints[I, 2] > Result.Data[1, 2] then Result.Data[1, 2] := BoxPoints[I, 2];
end;
end;
function RandomBox: TBox3D;
var
I: Integer;
begin
for I := 0 to 2 do
begin
Result.Data[0][I] := 50 - Random * 100;
Result.Data[1][I] := 50 - Random * 100;
OrderUp(Result.Data[0][I], Result.Data[1][I]);
end;
end;
var
Box: TBox3D;
I: Integer;
Matrix: TMatrix4Single;
begin
for I := 0 to 1000 do
begin
Box := RandomBox;
Matrix := RandomMatrix;
AssertBoxesEqual(Slower(Box, Matrix), Box.Transform(Matrix), 0.01);
end;
for I := 0 to 1000 do
begin
Box := RandomBox;
Matrix := RandomNonProjectionMatrix;
AssertBoxesEqual(Slower(Box, Matrix), Box.Transform(Matrix), 0.01);
end;
{ $define BOX3D_TRANSFORM_SPEED_TEST}
{$ifdef BOX3D_TRANSFORM_SPEED_TEST}
Writeln('On possibly projection matrix:');
Box := RandomBox;
Matrix := RandomMatrix;
ProcessTimerBegin;
for I := 0 to 1000000 do Slower(Box, Matrix);
Writeln(Format('Slower: %f', [ProcessTimerEnd]));
ProcessTimerBegin;
for I := 0 to 1000000 do Box3DTransform(Box, Matrix);
Writeln(Format('Box3DTransform: %f', [ProcessTimerEnd]));
Writeln('On non-projection matrix:');
Box := RandomBox;
Matrix := RandomNonProjectionMatrix;
ProcessTimerBegin;
for I := 0 to 1000000 do Slower(Box, Matrix);
Writeln(Format('Slower: %f', [ProcessTimerEnd]));
ProcessTimerBegin;
for I := 0 to 1000000 do Box3DTransform(Box, Matrix);
Writeln(Format('Box3DTransform: %f', [ProcessTimerEnd]));
{$endif BOX3D_TRANSFORM_SPEED_TEST}
end;
procedure TTestCastleBoxes.TestBox3DMaximumPlane;
begin
try
EmptyBox3D.MaximumPlane(Vector3Single(1, 1, 1));
except
on E: EBox3DEmpty do { Ok };
end;
AssertVectorsEqual(Vector4Single(-1, 0, 0, 2), Box3D(
Vector3Single(2, 3, 4),
Vector3Single(50, 60, 70)).MaximumPlane(Vector3Single(-1, 0, 0)));
AssertVectorsEqual(Vector4Single(0, 0, -1, 4), Box3D(
Vector3Single(2, 3, 4),
Vector3Single(50, 60, 70)).MaximumPlane(Vector3Single(0, 0, -1)));
AssertVectorsEqual(Vector4Single(1, 1, 1,
{ 50 + 60 + 70 + Result.Data[3] = 0 }
- 50 - 60 - 70
), Box3D(
Vector3Single(2, 3, 4),
Vector3Single(50, 60, 70)).MaximumPlane(Vector3Single(1, 1, 1)));
end;
procedure TTestCastleBoxes.TestBox3DMinimumPlane;
begin
try
EmptyBox3D.MinimumPlane(Vector3Single(1, 1, 1));
except
on E: EBox3DEmpty do { Ok };
end;
AssertVectorsEqual(Vector4Single(1, 0, 0, -2), Box3D(
Vector3Single(2, 3, 4),
Vector3Single(50, 60, 70)).MinimumPlane(Vector3Single(1, 0, 0)));
AssertVectorsEqual(Vector4Single(0, 0, 1, -4), Box3D(
Vector3Single(2, 3, 4),
Vector3Single(50, 60, 70)).MinimumPlane(Vector3Single(0, 0, 1)));
AssertVectorsEqual(Vector4Single(1, 1, 1,
{ 2 + 3 + 4 + Result.Data[3] = 0 }
- 2 - 3 - 4
), Box3D(
Vector3Single(2, 3, 4),
Vector3Single(50, 60, 70)).MinimumPlane(Vector3Single(1, 1, 1)));
end;
procedure TTestCastleBoxes.TestBox3DPointDistance;
const
Box: TBox3D = (Data: ((1, 2, 3), (4, 5, 6)) );
Epsilon = 0.0001;
begin
{ check point inside box case }
AssertFloatsEqual(0, Box.PointDistance(Vector3Single(1, 2, 3)), 0);
AssertFloatsEqual(0, Box.PointDistance(Vector3Single(3, 4, 5)), 0);
{ check point <-> box side case }
AssertFloatsEqual(4, Box.PointDistance(Vector3Single(3, 4, 10)));
AssertFloatsEqual(3, Box.PointDistance(Vector3Single(3, 4, 0)));
{ check point <-> box edge case }
AssertFloatsEqual(Sqrt( Sqr(10-6) + Sqr(10-5) ),
Box.PointDistance(Vector3Single(3, 10, 10)),
Epsilon);
AssertFloatsEqual(Sqrt( Sqr(0-2) + Sqr(0-3) ),
Box.PointDistance(Vector3Single(3, 0, 0)),
Epsilon);
{ check point <-> box corner case }
AssertFloatsEqual(Sqrt( Sqr(10-6) + Sqr(10-5) + Sqr(10-4) ),
Box.PointDistance(Vector3Single(10, 10, 10)),
Epsilon);
AssertFloatsEqual(Sqrt( Sqr(0-2) + Sqr(0-3) + Sqr(0-1) ),
Box.PointDistance(Vector3Single(0, 0, 0)),
Epsilon);
end;
procedure TTestCastleBoxes.Test2D;
const
Box: TBox3D = (Data: ((1, 2, 3), (4, 5, 6)) );
Box2: TBox3D = (Data: ((1, 2, 3), (2, 5, 13)) );
begin
AssertTrue(Box.PointInside2D(Vector3Single(2, 3, 10), 2));
AssertTrue(not Box.PointInside2D(Vector3Single(2, 3, 10), 0));
AssertTrue(not Box.PointInside2D(Vector3Single(2, 3, 10), 1));
try
Box.PointInside2D(Vector3Single(2, 3, 10), 3);
Fail('Above PointInside2D with IgnoreIndex = 3 should raise exception');
except end;
AssertFloatsEqual(Sqrt(Sqr(5) + Sqr(6)), Box.Radius2D(0), 0.01);
AssertFloatsEqual(Sqrt(Sqr(4) + Sqr(6)), Box.Radius2D(1), 0.01);
AssertFloatsEqual(Sqrt(Sqr(4) + Sqr(5)), Box.Radius2D(2), 0.01);
try
Box.Radius2D(3);
Fail('Above Radius2D with IgnoreIndex = 3 should raise exception');
except end;
AssertFloatsEqual(Sqrt(Sqr(4) + Sqr(5) + Sqr(6)), Box.Radius, 0.01);
AssertFloatsEqual(Sqrt(Sqr(3) + Sqr(3) + Sqr(3)), Box.Diagonal, 0.01);
AssertFloatsEqual(Sqrt(Sqr(1) + Sqr(10) + Sqr(3)), Box2.Diagonal, 0.01);
end;
initialization
RegisterTest(TTestCastleBoxes);
end.
|