1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
{
Copyright 2008-2017 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ More involved version of animate_3d_model_by_code.lpr:
constructs 3D model (VRML/X3D graph) by code and then animates it by code
(showing a little more interesting animation, sin*cos displayed in 3D). }
{ $define LOG}
program animate_3d_model_by_code_2;
uses CastleVectors, X3DNodes, CastleWindow, CastleLog,
CastleUtils, SysUtils, CastleGLUtils, CastleScene, CastleCameras,
CastleFilesUtils, CastleQuaternions {$ifdef LOG} ,CastleLog {$endif}, CastleParameters,
CastleStringUtils, CastleKeysMouse, CastleApplicationProperties;
var
Window: TCastleWindow;
Scene: TCastleScene;
const
XCount = 15;
YCount = 15;
var
Transform: array [0 .. XCount - 1, 0 .. YCount - 1] of TTransformNode;
procedure Update(Container: TUIContainer);
var
I, J: Integer;
T: TVector3;
begin
{ We want to keep track of current time here (for calculating
below). It's most natural to just use Scene.Time property for this.
(Scene.Time is already incremented for us by SceneManager.) }
for I := 0 to XCount - 1 do
for J := 0 to YCount - 1 do
begin
T := Transform[I, J].Translation;
T[2] := 2 *
Sin(I / 2 + Scene.Time) *
Cos(J / 2 + Scene.Time);
Transform[I, J].Translation := T;
end;
end;
function CreateVrmlGraph: TX3DRootNode;
var
Shape: TShapeNode;
Mat: TMaterialNode;
I, J: Integer;
begin
Result := TX3DRootNode.Create;
Mat := TMaterialNode.Create;
Mat.DiffuseColor := Vector3(1, 1, 0);
Shape := TShapeNode.Create;
Shape.Appearance := TAppearanceNode.Create;
Shape.Appearance.Material := Mat;
Shape.Geometry := TBoxNode.Create;
for I := 0 to XCount - 1 do
for J := 0 to YCount - 1 do
begin
Transform[I, J] := TTransformNode.Create;
Transform[I, J].Translation := Vector3(I * 2, J * 2, 0);
Transform[I, J].AddChildren(Shape);
Result.AddChildren(Transform[I, J]);
end;
end;
begin
Window := TCastleWindow.Create(Application);
Parameters.CheckHigh(0);
ApplicationProperties.OnWarning.Add(@ApplicationProperties.WriteWarningOnConsole);
{ We use a lot of boxes, so make their rendering fastest. }
DefaultTriangulationDivisions := 0;
Scene := TCastleScene.Create(nil);
try
Scene.Load(CreateVrmlGraph, true);
{$ifdef LOG}
InitializeLog;
Scene.LogChanges := true;
{$endif}
{ add Scene to SceneManager }
Window.SceneManager.MainScene := Scene;
Window.SceneManager.Items.Add(Scene);
{ init SceneManager.Camera }
Window.SceneManager.ExamineCamera.Init(Scene.BoundingBox, 0.1);
{ set more interesting view by default }
Window.SceneManager.ExamineCamera.Rotations := QuatFromAxisAngle(
Vector3(1, 1, 0).Normalize, Pi/4);
Window.OnUpdate := @Update;
Window.SetDemoOptions(K_F11, CharEscape, true);
Window.OpenAndRun;
finally Scene.Free end;
end.
|