File: testcastlecubemaps.pas

package info (click to toggle)
castle-game-engine 7.0~alpha.3%2Bdfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 969,476 kB
  • sloc: pascal: 911,523; javascript: 28,186; cpp: 14,157; xml: 9,939; ansic: 9,229; java: 3,653; objc: 2,737; sh: 1,214; makefile: 657; php: 65; lisp: 21; ruby: 8
file content (246 lines) | stat: -rw-r--r-- 6,216 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// -*- compile-command: "./test_single_testcase.sh TTestCubeMap" -*-
{
  Copyright 2008-2022 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

unit TestCastleCubeMaps;

interface

uses
  Classes, SysUtils, Generics.Collections, CastleTester;

type
  TTestCubeMap = class(TCastleTestCase)
  published
    procedure TestReverse;
    procedure TestCubeMapSolidAngle;
  end;

implementation

uses CastleVectors, CastleInternalCubeMaps, Math;

procedure TTestCubeMap.TestReverse;
var
  Side, NewSide: TCubeMapSide;
  Pixel, NewPixel: Cardinal;
  Dir: TVector3;
begin
  for Side := Low(Side) to High(Side) do
    for Pixel := 0 to Sqr(CubeMapSize) - 1 do
    begin
      Dir := CubeMapDirection(Side, Pixel);
      DirectionToCubeMap(Dir, NewSide, NewPixel);
      AssertTrue(NewSide = Side);
      AssertTrue(NewPixel = Pixel);
    end;
end;

type
  TTesterSingle = class
    procedure DoTest(const TestCase: TCastleTestCase);
  end;

  TTesterDouble = class
    procedure DoTest(const TestCase: TCastleTestCase);
  end;

  TTesterExtended = class
    procedure DoTest(const TestCase: TCastleTestCase);
  end;

procedure TTesterSingle.DoTest(const TestCase: TCastleTestCase);
var
  Side: TCubeMapSide;
  Pixel: Cardinal;
  SphereArea, SphereArea2: Single;
begin
  SphereArea := 0;
  SphereArea2 := 0;

  for Side := Low(Side) to High(Side) do
    for Pixel := 0 to Sqr(CubeMapSize) - 1 do
    begin
      SphereArea := SphereArea + CubeMapSolidAngle(Side, Pixel);
      SphereArea2 := SphereArea2 + (4 * Pi)/(6*Sqr(CubeMapSize));
    end;

  { I use SphereArea2 only to test the accuracy of addition:
    remember that even if CubeMapSolidAngle would be perfect,
    adding "6*Sqr(CubeMapSize)" values together always has some precision
    error accumulated.

    Results comparing SphereArea2 with (4 * Pi) (accuracy of addition):

    Single:
      12.566516876220703
      12.566370614359173
            | - difference here

    Double:
      12.566370614359418
      12.566370614359173
                     | - difference here

    Extended:
      12.566370614359173
      12.566370614359173

                         | no visible difference of these digits.
                           Looked at 30 first decimal digits,
                           still no difference.
  }

{
  Writeln(Format('%g', [SphereArea]));
//  Writeln(Format('%g', [SphereArea2]));
  Writeln(Format('%g', [4 * Pi]));
}

  { CubeMapSolidAngle is a gross approximation now, so we allow quite large
    error. }
  TestCase.AssertSameValue(4 * Pi, SphereArea, 0.02);
end;


procedure TTesterDouble.DoTest(const TestCase: TCastleTestCase);
var
  Side: TCubeMapSide;
  Pixel: Cardinal;
  SphereArea, SphereArea2: Double;
begin
  SphereArea := 0;
  SphereArea2 := 0;

  for Side := Low(Side) to High(Side) do
    for Pixel := 0 to Sqr(CubeMapSize) - 1 do
    begin
      SphereArea := SphereArea + CubeMapSolidAngle(Side, Pixel);
      SphereArea2 := SphereArea2 + (4 * Pi)/(6*Sqr(CubeMapSize));
    end;

  { I use SphereArea2 only to test the accuracy of addition:
    remember that even if CubeMapSolidAngle would be perfect,
    adding "6*Sqr(CubeMapSize)" values together always has some precision
    error accumulated.

    Results comparing SphereArea2 with (4 * Pi) (accuracy of addition):

    Single:
      12.566516876220703
      12.566370614359173
            | - difference here

    Double:
      12.566370614359418
      12.566370614359173
                     | - difference here

    Extended:
      12.566370614359173
      12.566370614359173

                         | no visible difference of these digits.
                           Looked at 30 first decimal digits,
                           still no difference.
  }

{
  Writeln(Format('%g', [SphereArea]));
//  Writeln(Format('%g', [SphereArea2]));
  Writeln(Format('%g', [4 * Pi]));
}

  { CubeMapSolidAngle is a gross approximation now, so we allow quite large
    error. }
  TestCase.AssertSameValue(4 * Pi, SphereArea, 0.02);
end;


procedure TTesterExtended.DoTest(const TestCase: TCastleTestCase);
var
  Side: TCubeMapSide;
  Pixel: Cardinal;
  SphereArea, SphereArea2: Extended;
begin
  SphereArea := 0;
  SphereArea2 := 0;

  for Side := Low(Side) to High(Side) do
    for Pixel := 0 to Sqr(CubeMapSize) - 1 do
    begin
      SphereArea := SphereArea + CubeMapSolidAngle(Side, Pixel);
      SphereArea2 := SphereArea2 + (4 * Pi)/(6*Sqr(CubeMapSize));
    end;

  { I use SphereArea2 only to test the accuracy of addition:
    remember that even if CubeMapSolidAngle would be perfect,
    adding "6*Sqr(CubeMapSize)" values together always has some precision
    error accumulated.

    Results comparing SphereArea2 with (4 * Pi) (accuracy of addition):

    Single:
      12.566516876220703
      12.566370614359173
            | - difference here

    Double:
      12.566370614359418
      12.566370614359173
                     | - difference here

    Extended:
      12.566370614359173
      12.566370614359173

                         | no visible difference of these digits.
                           Looked at 30 first decimal digits,
                           still no difference.
  }

{
  Writeln(Format('%g', [SphereArea]));
//  Writeln(Format('%g', [SphereArea2]));
  Writeln(Format('%g', [4 * Pi]));
}

  { CubeMapSolidAngle is a gross approximation now, so we allow quite large
    error. }
  TestCase.AssertSameValue(4 * Pi, SphereArea, 0.02);
end;

procedure TTestCubeMap.TestCubeMapSolidAngle;
var
  TS: TTesterSingle;
  TD: TTesterDouble;
  TE: TTesterExtended;
begin
  TS := TTesterSingle.Create;
  TS.DoTest(Self);
  TS.Free;

  TD := TTesterDouble.Create;
  TD.DoTest(Self);
  TD.Free;

  TE := TTesterExtended.Create;
  TE.DoTest(Self);
  TE.Free;
end;

initialization
  RegisterTest(TTestCubeMap);
end.