1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#include <functional>
#include <unordered_set>
#include <vector>
#include "catch/catch.hpp"
#include "map.h"
#include "enums.h"
#ifdef RELEASE
#include <chrono>
#endif
// A larger number for this would be GREAT, but the test isn't efficient enough to make it larger.
// Previously tried inserting into an unordered_set,
// but that was slower than appending to a vector and doing the sort+unique manually.
// This should be dramatically faster (but approximate) if we insert into a HyperLogLog instead.
#ifdef _GLIBCXX_DEBUG
// Smaller test on libstdc++ debug containers because otherwise this takes ~1 minute.
constexpr int MAX_COORDINATE = 30;
#else
constexpr int MAX_COORDINATE = 300;
#endif
constexpr int NUM_ENTRIES_2D = ( ( MAX_COORDINATE * 2 ) + 1 ) * ( ( MAX_COORDINATE * 2 ) + 1 );
constexpr int NUM_ENTRIES_3D = NUM_ENTRIES_2D * ( 21 );
size_t count_unique_elements( std::vector<size_t> &found_elements )
{
std::sort( found_elements.begin(), found_elements.end() );
const auto range_end = std::unique( found_elements.begin(), found_elements.end() );
return std::distance( found_elements.begin(), range_end );
}
TEST_CASE( "point_hash_distribution", "[hash]" )
{
std::vector<size_t> found_hashes;
found_hashes.reserve( NUM_ENTRIES_2D );
size_t element_count = 0;
for( int x = -MAX_COORDINATE; x <= MAX_COORDINATE; ++x ) {
for( int y = -MAX_COORDINATE; y <= MAX_COORDINATE; ++y ) {
element_count++;
found_hashes.push_back( std::hash<point> {}( { x, y } ) );
}
}
CHECK( count_unique_elements( found_hashes ) > element_count * 0.9 );
}
TEST_CASE( "tripoint_hash_distribution", "[hash]" )
{
std::vector<size_t> found_hashes;
found_hashes.reserve( NUM_ENTRIES_3D );
size_t element_count = 0;
for( int x = -MAX_COORDINATE; x <= MAX_COORDINATE; ++x ) {
for( int y = -MAX_COORDINATE; y <= MAX_COORDINATE; ++y ) {
for( int z = -10; z <= 10; ++z ) {
element_count++;
found_hashes.push_back( std::hash<tripoint> {}( { x, y, z } ) );
}
}
}
CHECK( count_unique_elements( found_hashes ) > element_count * 0.9 );
}
template<class Hash>
void put_coordinate( std::unordered_set<point, Hash> &c, int x, int y )
{
c.emplace( x, y );
}
template<class Hash>
void put_coordinate( std::unordered_set<tripoint, Hash> &c, int x, int y )
{
c.emplace( x, y, 0 );
}
// These are the old versions of the hash functions for point and tripoint.
struct legacy_point_hash {
std::size_t operator()( const point &k ) const {
// Circular shift y by half its width so hash(5,6) != hash(6,5).
return std::hash<int>()( k.x ) ^ std::hash<int>()( ( k.y << 16 ) | ( k.y >> 16 ) );
}
};
struct legacy_tripoint_hash {
std::size_t operator()( const tripoint &k ) const {
// Circular shift y and z so hash(5,6,7) != hash(7,6,5).
return std::hash<int>()( k.x ) ^
std::hash<int>()( ( k.y << 10 ) | ( k.y >> 10 ) ) ^
std::hash<int>()( ( k.z << 20 ) | ( k.z >> 20 ) );
}
};
// These legacy checks are expected to fail.
TEST_CASE( "legacy_point_hash_distribution", "[.]" )
{
std::vector<size_t> found_hashes;
found_hashes.reserve( NUM_ENTRIES_2D );
size_t element_count = 0;
for( int x = -MAX_COORDINATE; x <= MAX_COORDINATE; ++x ) {
for( int y = -MAX_COORDINATE; y <= MAX_COORDINATE; ++y ) {
element_count++;
found_hashes.push_back( legacy_point_hash{}( { x, y } ) );
}
}
CHECK( count_unique_elements( found_hashes ) > element_count * 0.9 );
}
TEST_CASE( "legacy_tripoint_hash_distribution", "[.]" )
{
std::vector<size_t> found_hashes;
found_hashes.reserve( NUM_ENTRIES_3D );
size_t element_count = 0;
for( int x = -MAX_COORDINATE; x <= MAX_COORDINATE; ++x ) {
for( int y = -MAX_COORDINATE; y <= MAX_COORDINATE; ++y ) {
for( int z = -10; z <= 10; ++z ) {
element_count++;
found_hashes.push_back( legacy_tripoint_hash{}( { x, y, z } ) );
}
}
}
CHECK( count_unique_elements( found_hashes ) > element_count * 0.9 );
}
#ifdef RELEASE
// These tests are slow and probably pointless for non-release builds
template<class CoordinateType, class Hash>
long get_set_runtime()
{
std::unordered_set<CoordinateType, Hash> test_set;
auto start1 = std::chrono::high_resolution_clock::now();
// The use case is repeatedly looking up the same entries repeatedly
// while sometimes inserting new ones.
for( int i = 0; i < 1000; ++i ) {
for( int x = -60; x <= 60; ++x ) {
for( int y = -60; y <= 60; ++y ) {
put_coordinate( test_set, x, y );
}
}
}
auto end1 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>( end1 - start1 ).count();
}
TEST_CASE( "legacy_point_hash_runoff", "[hash]" )
{
long legacy_runtime = get_set_runtime<point, legacy_point_hash>();
long new_runtime = get_set_runtime<point, std::hash<point>>();
CHECK( new_runtime < legacy_runtime );
}
TEST_CASE( "legacy_tripoint_hash_runoff", "[hash]" )
{
long legacy_runtime = get_set_runtime<tripoint, legacy_tripoint_hash>();
long new_runtime = get_set_runtime<tripoint, std::hash<tripoint>>();
CHECK( new_runtime < legacy_runtime );
}
#endif // RELEASE
|