1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
#include <sstream>
#include "catch/catch.hpp"
#include "map_memory.h"
#include "json.h"
#include "game_constants.h"
static constexpr tripoint p1{ 0, 0, 1 };
static constexpr tripoint p2{ 0, 0, 2 };
static constexpr tripoint p3{ 0, 0, 3 };
TEST_CASE( "map_memory_defaults", "[map_memory]" )
{
map_memory memory;
CHECK( memory.get_symbol( p1 ) == 0 );
memorized_terrain_tile default_tile = memory.get_tile( p1 );
CHECK( default_tile.tile.empty() );
CHECK( default_tile.subtile == 0 );
CHECK( default_tile.rotation == 0 );
}
TEST_CASE( "map_memory_remembers", "[map_memory]" )
{
map_memory memory;
memory.memorize_symbol( 2, p1, 1 );
memory.memorize_symbol( 2, p2, 2 );
CHECK( memory.get_symbol( p1 ) == 1 );
CHECK( memory.get_symbol( p2 ) == 2 );
}
TEST_CASE( "map_memory_limited", "[map_memory]" )
{
lru_cache<long> symbol_cache;
symbol_cache.insert( 2, p1, 1 );
symbol_cache.insert( 2, p2, 1 );
symbol_cache.insert( 2, p3, 1 );
CHECK( symbol_cache.get( p1, 0 ) == 0 );
}
TEST_CASE( "map_memory_overwrites", "[map_memory]" )
{
map_memory memory;
memory.memorize_symbol( 2, p1, 1 );
memory.memorize_symbol( 2, p2, 2 );
memory.memorize_symbol( 2, p2, 3 );
CHECK( memory.get_symbol( p1 ) == 1 );
CHECK( memory.get_symbol( p2 ) == 3 );
}
TEST_CASE( "map_memory_erases_lru", "[map_memory]" )
{
lru_cache<long> symbol_cache;
symbol_cache.insert( 2, p1, 1 );
symbol_cache.insert( 2, p2, 2 );
symbol_cache.insert( 2, p1, 1 );
symbol_cache.insert( 2, p3, 3 );
CHECK( symbol_cache.get( p1, 0 ) == 1 );
CHECK( symbol_cache.get( p2, 0 ) == 0 );
CHECK( symbol_cache.get( p3, 0 ) == 3 );
}
TEST_CASE( "map_memory_survives_save_lod", "[map_memory]" )
{
map_memory memory;
memory.memorize_symbol( 2, p1, 1 );
memory.memorize_symbol( 2, p2, 2 );
// Save and reload
std::ostringstream jsout_s;
JsonOut jsout( jsout_s );
memory.store( jsout );
INFO( "Json was: " << jsout_s.str() );
std::istringstream jsin_s( jsout_s.str() );
JsonIn jsin( jsin_s );
map_memory memory2;
memory2.load( jsin );
memory.memorize_symbol( 2, p3, 3 );
memory2.memorize_symbol( 2, p3, 3 );
CHECK( memory.get_symbol( p1 ) == memory2.get_symbol( p1 ) );
CHECK( memory.get_symbol( p2 ) == memory2.get_symbol( p2 ) );
CHECK( memory.get_symbol( p3 ) == memory2.get_symbol( p3 ) );
}
#include <chrono>
TEST_CASE( "lru_cache_perf", "[.]" )
{
constexpr int max_size = 1000000;
lru_cache<long> symbol_cache;
const auto start1 = std::chrono::high_resolution_clock::now();
for( int i = 0; i < 1000000; ++i ) {
for( int j = -60; j <= 60; ++j ) {
symbol_cache.insert( max_size, { i, j, 0 }, 1 );
}
}
const auto end1 = std::chrono::high_resolution_clock::now();
const long diff1 = std::chrono::duration_cast<std::chrono::microseconds>( end1 - start1 ).count();
printf( "completed %d insertions in %ld microseconds.\n", max_size, diff1 );
/*
* Original tripoint hash completed 1000000 insertions in 96136925 microseconds.
* Table based interleave v1 completed 1000000 insertions in 41435604 microseconds.
* Table based interleave v2 completed 1000000 insertions in 40856530 microseconds.
* Jbtw hash completed 1000000 insertions in 19049163 microseconds.
* rerun 21152804
* With 1024 batch completed 1000000 insertions in 39902325 microseconds.
* backed out batching completed 1000000 insertions in 20332498 microseconds.
* rerun completed 1000000 insertions in 21659107 microseconds.
* simple batching, disabled completed 1000000 insertions in 18541486 microseconds.
* simple batching, 1024 completed 1000000 insertions in 23102395 microseconds.
* rerun completed 1000000 insertions in 31337290 microseconds.
*/
}
void shift_map_memory_seen_cache(
std::bitset<MAPSIZE *SEEX *MAPSIZE *SEEY> &map_memory_seen_cache,
const int sx, const int sy );
// There are 4 quadrants we want to check,
// 1 | 2
// -----
// 3 | 4
// The partitions are defined by x_partition and y_partition
// Each partition has an expected value, and should be homogenous.
void check_quadrants( std::bitset<MAPSIZE *SEEX *MAPSIZE *SEEY> &test_cache,
size_t x_partition, size_t y_partition,
bool first_val, bool second_val, bool third_val, bool fourth_val )
{
size_t y = 0;
for( ; y < y_partition; ++y ) {
size_t y_offset = y * SEEX * MAPSIZE;
size_t x = 0;
for( ; x < x_partition; ++x ) {
INFO( x << " " << y );
CHECK( first_val == test_cache[ y_offset + x ] );
}
for( ; x < SEEX * MAPSIZE; ++x ) {
INFO( x << " " << y );
CHECK( second_val == test_cache[ y_offset + x ] );
}
}
for( ; y < SEEY * MAPSIZE; ++y ) {
size_t y_offset = y * SEEX * MAPSIZE;
size_t x = 0;
for( ; x < x_partition; ++x ) {
INFO( x << " " << y );
CHECK( third_val == test_cache[ y_offset + x ] );
}
for( ; x < SEEX * MAPSIZE; ++x ) {
INFO( x << " " << y );
CHECK( fourth_val == test_cache[ y_offset + x ] );
}
}
}
constexpr size_t first_twelve = SEEX;
constexpr size_t last_twelve = ( SEEX *MAPSIZE ) - SEEX;
TEST_CASE( "shift_map_memory_seen_cache" )
{
std::bitset<MAPSIZE *SEEX *MAPSIZE *SEEY> test_cache;
GIVEN( "all bits are set" ) {
test_cache.set();
WHEN( "positive x shift" ) {
shift_map_memory_seen_cache( test_cache, 1, 0 );
THEN( "last 12 columns are 0, rest are 1" ) {
check_quadrants( test_cache, last_twelve, 0,
true, false, true, false );
}
}
WHEN( "negative x shift" ) {
shift_map_memory_seen_cache( test_cache, -1, 0 );
THEN( "first 12 columns are 0, rest are 1" ) {
check_quadrants( test_cache, first_twelve, 0,
false, true, false, true );
}
}
WHEN( "positive y shift" ) {
shift_map_memory_seen_cache( test_cache, 0, 1 );
THEN( "last 12 rows are 0, rest are 1" ) {
check_quadrants( test_cache, 0, last_twelve,
true, true, false, false );
}
}
WHEN( "negative y shift" ) {
shift_map_memory_seen_cache( test_cache, 0, -1 );
THEN( "first 12 rows are 0, rest are 1" ) {
check_quadrants( test_cache, 0, first_twelve,
false, false, true, true );
}
}
WHEN( "positive x, positive y shift" ) {
shift_map_memory_seen_cache( test_cache, 1, 1 );
THEN( "last 12 columns and rows are 0, rest are 1" ) {
check_quadrants( test_cache, last_twelve, last_twelve,
true, false, false, false );
}
}
WHEN( "positive x, negative y shift" ) {
shift_map_memory_seen_cache( test_cache, 1, -1 );
THEN( "last 12 columns and first 12 rows are 0, rest are 1" ) {
check_quadrants( test_cache, last_twelve, first_twelve,
false, false, true, false );
}
}
WHEN( "negative x, positive y shift" ) {
shift_map_memory_seen_cache( test_cache, -1, 1 );
THEN( "first 12 columns and last 12 rows are 0, rest are 1" ) {
check_quadrants( test_cache, first_twelve, last_twelve,
false, true, false, false );
}
}
WHEN( "negative x, negative y shift" ) {
shift_map_memory_seen_cache( test_cache, -1, -1 );
THEN( "first 12 columns and rows are 0, rest are 1" ) {
check_quadrants( test_cache, first_twelve, first_twelve,
false, false, false, true );
}
}
}
}
|