File: shadowcasting_test.cpp

package info (click to toggle)
cataclysm-dda 0.C%2Bgit20190228.faafa3a-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 181,636 kB
  • sloc: cpp: 256,609; python: 2,621; makefile: 862; sh: 495; perl: 37; xml: 33
file content (629 lines) | stat: -rw-r--r-- 24,518 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#include <chrono>
#include <cstdio>
#include <random>

#include "catch/catch.hpp"
#include "line.h" // For rl_dist.
#include "map.h"
#include "shadowcasting.h"

// Constants setting the ratio of set to unset tiles.
constexpr unsigned int NUMERATOR = 1;
constexpr unsigned int DENOMINATOR = 10;

void oldCastLight( float ( &output_cache )[MAPSIZE * SEEX][MAPSIZE * SEEY],
                   const float ( &input_array )[MAPSIZE * SEEX][MAPSIZE * SEEY],
                   const int xx, const int xy, const int yx, const int yy,
                   const int offsetX, const int offsetY, const int offsetDistance,
                   const int row = 1, float start = 1.0f, const float end = 0.0f )
{

    float newStart = 0.0f;
    const float radius = 60.0f - offsetDistance;
    if( start < end ) {
        return;
    }
    bool blocked = false;
    static constexpr tripoint origin( 0, 0, 0 );
    tripoint delta( 0, 0, 0 );
    for( int distance = row; distance <= radius && !blocked; distance++ ) {
        delta.y = -distance;
        for( delta.x = -distance; delta.x <= 0; delta.x++ ) {
            const int currentX = offsetX + delta.x * xx + delta.y * xy;
            const int currentY = offsetY + delta.x * yx + delta.y * yy;
            const float leftSlope = ( delta.x - 0.5f ) / ( delta.y + 0.5f );
            const float rightSlope = ( delta.x + 0.5f ) / ( delta.y - 0.5f );

            if( start < rightSlope ) {
                continue;
            } else if( end > leftSlope ) {
                break;
            }

            //check if it's within the visible area and mark visible if so
            if( rl_dist( origin, delta ) <= radius ) {
                output_cache[currentX][currentY] = LIGHT_TRANSPARENCY_CLEAR;
            }

            if( blocked ) {
                //previous cell was a blocking one
                if( input_array[currentX][currentY] == LIGHT_TRANSPARENCY_SOLID ) {
                    //hit a wall
                    newStart = rightSlope;
                } else {
                    blocked = false;
                    start = newStart;
                }
            } else {
                if( input_array[currentX][currentY] == LIGHT_TRANSPARENCY_SOLID &&
                    distance < radius ) {
                    //hit a wall within sight line
                    blocked = true;
                    oldCastLight( output_cache, input_array, xx, xy, yx, yy,
                                  offsetX, offsetY, offsetDistance,  distance + 1, start, leftSlope );
                    newStart = rightSlope;
                }
            }
        }
    }
}

/*
 * This is checking whether bresenham visibility checks match shadowcasting (they don't).
 */
bool bresenham_visibility_check( const int offsetX, const int offsetY, const int x, const int y,
                                 const float ( &transparency_cache )[MAPSIZE * SEEX][MAPSIZE * SEEY] )
{
    if( offsetX == x && offsetY == y ) {
        return true;
    }
    bool visible = true;
    const int junk = 0;
    bresenham( x, y, offsetX, offsetY, junk,
    [&transparency_cache, &visible]( const point & new_point ) {
        if( transparency_cache[new_point.x][new_point.y] <=
            LIGHT_TRANSPARENCY_SOLID ) {
            visible = false;
            return false;
        }
        return true;
    } );
    return visible;
}

void randomly_fill_transparency(
    float ( &transparency_cache )[MAPSIZE * SEEX][MAPSIZE * SEEY],
    const unsigned int numerator = NUMERATOR, const unsigned int denominator = DENOMINATOR )
{
    // Construct a rng that produces integers in a range selected to provide the probability
    // we want, i.e. if we want 1/4 tiles to be set, produce numbers in the range 0-3,
    // with 0 indicating the bit is set.
    const unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
    std::default_random_engine generator( seed );
    std::uniform_int_distribution<unsigned int> distribution( 0, denominator );
    auto rng = std::bind( distribution, generator );

    // Initialize the transparency value of each square to a random value.
    for( auto &inner : transparency_cache ) {
        for( float &square : inner ) {
            if( rng() < numerator ) {
                square = LIGHT_TRANSPARENCY_SOLID;
            } else {
                square = LIGHT_TRANSPARENCY_CLEAR;
            }
        }
    }
}

bool is_nonzero( const float x )
{
    return x != 0;
}

bool is_nonzero( four_quadrants x )
{
    return is_nonzero( x.max() );
}

template<typename Exp>
bool grids_are_equivalent( float control[MAPSIZE * SEEX][MAPSIZE * SEEY],
                           Exp experiment[MAPSIZE * SEEX][MAPSIZE * SEEY] )
{
    for( int x = 0; x < MAPSIZE * SEEX; ++x ) {
        for( int y = 0; y < MAPSIZE * SEEY; ++y ) {
            // Check that both agree on the outcome, but not necessarily the same values.
            if( is_nonzero( control[x][y] ) != is_nonzero( experiment[x][y] ) ) {
                return false;
            }
        }
    }

    return true;
}

template<typename Exp>
void print_grid_comparison( const int offsetX, const int offsetY,
                            float ( &transparency_cache )[MAPSIZE * SEEX][MAPSIZE * SEEY],
                            float control[MAPSIZE * SEEX][MAPSIZE * SEEY],
                            Exp experiment[MAPSIZE * SEEX][MAPSIZE * SEEY] )
{
    for( int x = 0; x < MAPSIZE * SEEX; ++x ) {
        for( int y = 0; y < MAPSIZE * SEEX; ++y ) {
            char output = ' ';
            const bool shadowcasting_disagrees =
                is_nonzero( control[x][y] ) != is_nonzero( experiment[x][y] );
            const bool bresenham_disagrees =
                bresenham_visibility_check( offsetX, offsetY, x, y, transparency_cache ) !=
                is_nonzero( experiment[x][y] );

            if( shadowcasting_disagrees && bresenham_disagrees ) {
                if( is_nonzero( experiment[x][y] ) ) {
                    output = 'R'; // Old shadowcasting and bresenham can't see.
                } else {
                    output = 'N'; // New shadowcasting can't see.
                }
            } else if( shadowcasting_disagrees ) {
                if( is_nonzero( control[x][y] ) ) {
                    output = 'C'; // New shadowcasting & bresenham can't see.
                } else {
                    output = 'O'; // Old shadowcasting can't see.
                }
            } else if( bresenham_disagrees ) {
                if( is_nonzero( experiment[x][y] ) ) {
                    output = 'B'; // Bresenham can't see it.
                } else {
                    output = 'S'; // Shadowcasting can't see it.
                }
            }
            if( transparency_cache[x][y] == LIGHT_TRANSPARENCY_SOLID ) {
                output = '#';
            }
            if( x == offsetX && y == offsetY ) {
                output = '@';
            }
            printf( "%c", output );
        }
        printf( "\n" );
    }
    for( int x = 0; x < MAPSIZE * SEEX; ++x ) {
        for( int y = 0; y < MAPSIZE * SEEX; ++y ) {
            char output = ' ';
            if( transparency_cache[x][y] == LIGHT_TRANSPARENCY_SOLID ) {
                output = '#';
            } else if( control[x][y] > LIGHT_TRANSPARENCY_SOLID ) {
                output = 'X';
            }
            printf( "%c", output );
        }
        printf( "    " );
        for( int y = 0; y < MAPSIZE * SEEX; ++y ) {
            char output = ' ';
            if( transparency_cache[x][y] == LIGHT_TRANSPARENCY_SOLID ) {
                output = '#';
            } else if( is_nonzero( experiment[x][y] ) ) {
                output = 'X';
            }
            printf( "%c", output );
        }
        printf( "\n" );
    }
}

void shadowcasting_runoff( const int iterations, const bool test_bresenham = false )
{
    float seen_squares_control[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};
    float seen_squares_experiment[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};
    float transparency_cache[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};

    randomly_fill_transparency( transparency_cache );

    map dummy;

    const int offsetX = 65;
    const int offsetY = 65;

    const auto start1 = std::chrono::high_resolution_clock::now();
    for( int i = 0; i < iterations; i++ ) {
        // First the control algorithm.
        oldCastLight( seen_squares_control, transparency_cache, 0, 1, 1, 0, offsetX, offsetY, 0 );
        oldCastLight( seen_squares_control, transparency_cache, 1, 0, 0, 1, offsetX, offsetY, 0 );

        oldCastLight( seen_squares_control, transparency_cache, 0, -1, 1, 0, offsetX, offsetY, 0 );
        oldCastLight( seen_squares_control, transparency_cache, -1, 0, 0, 1, offsetX, offsetY, 0 );

        oldCastLight( seen_squares_control, transparency_cache, 0, 1, -1, 0, offsetX, offsetY, 0 );
        oldCastLight( seen_squares_control, transparency_cache, 1, 0, 0, -1, offsetX, offsetY, 0 );

        oldCastLight( seen_squares_control, transparency_cache, 0, -1, -1, 0, offsetX, offsetY, 0 );
        oldCastLight( seen_squares_control, transparency_cache, -1, 0, 0, -1, offsetX, offsetY, 0 );
    }
    const auto end1 = std::chrono::high_resolution_clock::now();

    const auto start2 = std::chrono::high_resolution_clock::now();
    for( int i = 0; i < iterations; i++ ) {
        // Then the current algorithm.
        castLightAll<float, float, sight_calc, sight_check, update_light, accumulate_transparency>(
            seen_squares_experiment, transparency_cache, offsetX, offsetY );
    }
    const auto end2 = std::chrono::high_resolution_clock::now();

    if( iterations > 1 ) {
        const long diff1 = std::chrono::duration_cast<std::chrono::microseconds>( end1 - start1 ).count();
        const long diff2 = std::chrono::duration_cast<std::chrono::microseconds>( end2 - start2 ).count();
        printf( "oldCastLight() executed %d times in %ld microseconds.\n",
                iterations, diff1 );
        printf( "castLight() executed %d times in %ld microseconds.\n",
                iterations, diff2 );
    }

    bool passed = grids_are_equivalent( seen_squares_control, seen_squares_experiment );
    for( int x = 0; test_bresenham && passed && x < MAPSIZE * SEEX; ++x ) {
        for( int y = 0; y < MAPSIZE * SEEX; ++y ) {
            // Check that both agree on the outcome, but not necessarily the same values.
            if( bresenham_visibility_check( offsetX, offsetY, x, y, transparency_cache ) !=
                ( seen_squares_experiment[x][y] > LIGHT_TRANSPARENCY_SOLID ) ) {
                passed = false;
                break;
            }
        }
    }

    if( !passed ) {
        print_grid_comparison( offsetX, offsetY, transparency_cache, seen_squares_control,
                               seen_squares_experiment );
    }

    REQUIRE( passed );
}

void shadowcasting_float_quad( const int iterations, const unsigned int denominator = DENOMINATOR )
{
    float lit_squares_float[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};
    four_quadrants lit_squares_quad[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{}};
    float transparency_cache[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};

    randomly_fill_transparency( transparency_cache, denominator );

    map dummy;

    const int offsetX = 65;
    const int offsetY = 65;

    const auto start1 = std::chrono::high_resolution_clock::now();
    for( int i = 0; i < iterations; i++ ) {
        castLightAll<float, four_quadrants, sight_calc, sight_check, update_light_quadrants,
                     accumulate_transparency>(
                         lit_squares_quad, transparency_cache, offsetX, offsetY );
    }
    const auto end1 = std::chrono::high_resolution_clock::now();

    const auto start2 = std::chrono::high_resolution_clock::now();
    for( int i = 0; i < iterations; i++ ) {
        // Then the current algorithm.
        castLightAll<float, float, sight_calc, sight_check, update_light,
                     accumulate_transparency>(
                         lit_squares_float, transparency_cache, offsetX, offsetY );
    }
    const auto end2 = std::chrono::high_resolution_clock::now();

    if( iterations > 1 ) {
        const long diff1 = std::chrono::duration_cast<std::chrono::microseconds>( end1 - start1 ).count();
        const long diff2 = std::chrono::duration_cast<std::chrono::microseconds>( end2 - start2 ).count();
        printf( "castLight on four_quadrants (denominator %u) "
                "executed %d times in %ld microseconds.\n",
                denominator, iterations, diff1 );
        printf( "castLight on floats (denominator %u) "
                "executed %d times in %ld microseconds.\n",
                denominator, iterations, diff2 );
    }

    bool passed = grids_are_equivalent( lit_squares_float, lit_squares_quad );

    if( !passed ) {
        print_grid_comparison( offsetX, offsetY, transparency_cache, lit_squares_float,
                               lit_squares_quad );
    }

    REQUIRE( passed );
}

void shadowcasting_3d_2d( const int iterations )
{
    float seen_squares_control[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};
    float seen_squares_experiment[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};
    float transparency_cache[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{0}};
    bool floor_cache[MAPSIZE * SEEX][MAPSIZE * SEEY] = {{false}};

    randomly_fill_transparency( transparency_cache );

    map dummy;

    const int offsetX = 65;
    const int offsetY = 65;
    const int offsetZ = 0;

    const auto start1 = std::chrono::high_resolution_clock::now();
    for( int i = 0; i < iterations; i++ ) {
        // First the control algorithm.
        castLightAll<float, float, sight_calc, sight_check, update_light, accumulate_transparency>(
            seen_squares_control, transparency_cache, offsetX, offsetY );
    }
    const auto end1 = std::chrono::high_resolution_clock::now();

    const tripoint origin( offsetX, offsetY, offsetZ );
    std::array<const float ( * )[MAPSIZE *SEEX][MAPSIZE *SEEY], OVERMAP_LAYERS> transparency_caches;
    std::array<float ( * )[MAPSIZE *SEEX][MAPSIZE *SEEY], OVERMAP_LAYERS> seen_caches;
    std::array<const bool ( * )[MAPSIZE *SEEX][MAPSIZE *SEEY], OVERMAP_LAYERS> floor_caches;
    for( int z = -OVERMAP_DEPTH; z <= OVERMAP_HEIGHT; z++ ) {
        // TODO: Give some more proper values here
        transparency_caches[z + OVERMAP_DEPTH] = &transparency_cache;
        seen_caches[z + OVERMAP_DEPTH] = &seen_squares_experiment;
        floor_caches[z + OVERMAP_DEPTH] = &floor_cache;
    }

    const auto start2 = std::chrono::high_resolution_clock::now();
    for( int i = 0; i < iterations; i++ ) {
        // Then the newer algorithm.
        cast_zlight<float, sight_calc, sight_check, accumulate_transparency>(
            seen_caches, transparency_caches, floor_caches, origin, 0, 1.0 );
    }
    const auto end2 = std::chrono::high_resolution_clock::now();

    if( iterations > 1 ) {
        const long diff1 = std::chrono::duration_cast<std::chrono::microseconds>( end1 - start1 ).count();
        const long diff2 = std::chrono::duration_cast<std::chrono::microseconds>( end2 - start2 ).count();
        printf( "castLight() executed %d times in %ld microseconds.\n",
                iterations, diff1 );
        printf( "cast_zlight() executed %d times in %ld microseconds.\n",
                iterations, diff2 );
        printf( "new/old execution time ratio: %.02f.\n", static_cast<double>( diff2 ) / diff1 );
    }

    bool passed = grids_are_equivalent( seen_squares_control, seen_squares_experiment );

    if( !passed ) {
        print_grid_comparison( offsetX, offsetY, transparency_cache, seen_squares_control,
                               seen_squares_experiment );
    }

    REQUIRE( passed );
}


// T, O and V are 'T'ransparent, 'O'paque and 'V'isible.
// X marks the player location, which is not set to visible by this algorithm.
#define T LIGHT_TRANSPARENCY_CLEAR
#define O LIGHT_TRANSPARENCY_SOLID
#define V LIGHT_TRANSPARENCY_CLEAR
#define X LIGHT_TRANSPARENCY_SOLID

const point ORIGIN( 65, 65 );

struct grid_overlay {
    std::vector<std::vector<float>> data;
    point offset;
    float default_value;

    // origin_offset is specified as the coordinates of the "camera" within the overlay.
    grid_overlay( const point origin_offset, const float default_value ) {
        this->offset = ORIGIN - origin_offset;
        this->default_value = default_value;
    }

    int height() const {
        return data.size();
    }
    int width() const {
        if( data.empty() ) {
            return 0;
        }
        return data[0].size();
    }

    float get_global( const int x, const int y ) const {
        if( y >= offset.y && y < offset.y + height() &&
            x >= offset.x && x < offset.x + width() ) {
            return data[ y - offset.y ][ x - offset.x ];
        }
        return default_value;
    }

    float get_local( const int x, const int y ) const {
        return data[ y ][ x ];
    }
};

static void run_spot_check( const grid_overlay &test_case, const grid_overlay &expected_result )
{
    float seen_squares[ MAPSIZE * SEEY ][ MAPSIZE * SEEX ] = {{ 0 }};
    float transparency_cache[ MAPSIZE * SEEY ][ MAPSIZE * SEEX ] = {{ 0 }};

    for( int y = 0; y < static_cast<int>( sizeof( transparency_cache ) /
                                          sizeof( transparency_cache[0] ) ); ++y ) {
        for( int x = 0; x < static_cast<int>( sizeof( transparency_cache[0] ) /
                                              sizeof( transparency_cache[0][0] ) ); ++x ) {
            transparency_cache[ y ][ x ] = test_case.get_global( x, y );
        }
    }

    castLightAll<float, float, sight_calc, sight_check, update_light, accumulate_transparency>(
        seen_squares, transparency_cache, ORIGIN.x, ORIGIN.y );

    // Compares the whole grid, but out-of-bounds compares will de-facto pass.
    for( int y = 0; y < expected_result.height(); ++y ) {
        for( int x = 0; x < expected_result.width(); ++x ) {
            INFO( "x:" << x << " y:" << y << " expected:" << expected_result.data[y][x] << " actual:" <<
                  seen_squares[expected_result.offset.y + y][expected_result.offset.x + x] );
            if( V == expected_result.get_local( x, y ) ) {
                CHECK( seen_squares[expected_result.offset.y + y][expected_result.offset.x + x] > 0 );
            } else {
                CHECK( seen_squares[expected_result.offset.y + y][expected_result.offset.x + x] == 0 );
            }
        }
    }
}

TEST_CASE( "shadowcasting_slope_inversion_regression_test", "[shadowcasting]" )
{
    grid_overlay test_case( { 7, 8 }, LIGHT_TRANSPARENCY_CLEAR );
    test_case.data = {
        {T, T, T, T, T, T, T, T, T, T},
        {T, O, T, T, T, T, T, T, T, T},
        {T, O, T, T, T, T, T, T, T, T},
        {T, O, O, T, O, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, O, T},
        {T, T, T, T, T, T, O, T, O, T},
        {T, T, T, T, T, T, O, O, O, T},
        {T, T, T, T, T, T, T, T, T, T}
    };

    grid_overlay expected_results( { 7, 8 }, LIGHT_TRANSPARENCY_CLEAR );
    expected_results.data = {
        {O, O, O, V, V, V, V, V, V, V},
        {O, V, V, O, V, V, V, V, V, V},
        {O, O, V, V, V, V, V, V, V, V},
        {O, O, V, V, V, V, V, V, V, V},
        {O, O, V, V, V, V, V, V, V, V},
        {O, O, O, V, V, V, V, V, V, O},
        {O, O, O, O, V, V, V, V, V, O},
        {O, O, O, O, O, V, V, V, V, O},
        {O, O, O, O, O, O, V, X, V, O},
        {O, O, O, O, O, O, V, V, V, O},
        {O, O, O, O, O, O, O, O, O, O}
    };

    run_spot_check( test_case, expected_results );
}

TEST_CASE( "shadowcasting_pillar_behavior_cardinally_adjacent", "[shadowcasting]" )
{
    grid_overlay test_case( { 1, 4 }, LIGHT_TRANSPARENCY_CLEAR );
    test_case.data = {
        {T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T},
        {T, T, O, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T}
    };

    grid_overlay expected_results( { 1, 4 }, LIGHT_TRANSPARENCY_CLEAR );
    expected_results.data = {
        {V, V, V, V, V, V, V, O, O},
        {V, V, V, V, V, V, O, O, O},
        {V, V, V, V, V, O, O, O, O},
        {V, V, V, V, O, O, O, O, O},
        {V, X, V, O, O, O, O, O, O},
        {V, V, V, V, O, O, O, O, O},
        {V, V, V, V, V, O, O, O, O},
        {V, V, V, V, V, V, O, O, O},
        {V, V, V, V, V, V, V, O, O}
    };

    run_spot_check( test_case, expected_results );
}

TEST_CASE( "shadowcasting_pillar_behavior_2_1_diagonal_gap", "[shadowcasting]" )
{
    grid_overlay test_case( { 1, 1 }, LIGHT_TRANSPARENCY_CLEAR );
    test_case.data = {
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, O, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T}
    };

    grid_overlay expected_results( { 1, 1 }, LIGHT_TRANSPARENCY_CLEAR );
    expected_results.data = {
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, X, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, O, O, O, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, O, O, O, O, O, O, O, V, V, V, V, V},
        {V, V, V, V, V, V, V, O, O, O, O, O, O, O, O, O, O, O},
        {V, V, V, V, V, V, V, V, O, O, O, O, O, O, O, O, O, O},
        {V, V, V, V, V, V, V, V, V, O, O, O, O, O, O, O, O, O},
        {V, V, V, V, V, V, V, V, V, V, O, O, O, O, O, O, O, O},
    };

    run_spot_check( test_case, expected_results );
}

TEST_CASE( "shadowcasting_vision_along_a_wall", "[shadowcasting]" )
{
    grid_overlay test_case( { 8, 2 }, LIGHT_TRANSPARENCY_CLEAR );
    test_case.data = {
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T},
        {T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T}
    };

    grid_overlay expected_results( { 8, 2 }, LIGHT_TRANSPARENCY_CLEAR );
    expected_results.data = {
        {O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O},
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, V, V, X, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V},
        {V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V, V}
    };

    run_spot_check( test_case, expected_results );
}

// Some random edge cases aren't matching.
TEST_CASE( "shadowcasting_runoff", "[.]" )
{
    shadowcasting_runoff( 1 );
}

TEST_CASE( "shadowcasting_performance", "[.]" )
{
    shadowcasting_runoff( 100000 );
}

TEST_CASE( "shadowcasting_3d_2d", "[.]" )
{
    shadowcasting_3d_2d( 1 );
}

TEST_CASE( "shadowcasting_3d_2d_performance", "[.]" )
{
    shadowcasting_3d_2d( 100000 );
}

TEST_CASE( "shadowcasting_float_quad_equivalence", "[shadowcasting]" )
{
    shadowcasting_float_quad( 1 );
}

TEST_CASE( "shadowcasting_float_quad_performance", "[.]" )
{
    shadowcasting_float_quad( 1000000 );
    shadowcasting_float_quad( 1000000, 100 );
}

// I'm not sure this will ever work.
TEST_CASE( "bresenham_vs_shadowcasting", "[.]" )
{
    shadowcasting_runoff( 1, true );
}